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his article describes a technique for coor-

dinating action and perception within a

mobile surveillance robot employing an

architecture composed of twin navigation
and perception hierarchies. A knowledge-based super-
visor controls these hierarchies. This architecture has
enabled us to explore the interface between heuristic
and procedural programming techniques for percep-
tion and navigation. Results illustrate that most low-
level perception and navigation tasks are algorithmic
in nature. At the highest levels, on the other hand,
decisions regarding which actions to perform are
based on knowledge relevant to each situation. Such
decisions are heuristic, and relevant knowledge is natu-
rally encoded as production rules (organized as
contexts).
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Coordinating action and perception

Research reported in this article is part of an effort
to develop a family of intelligent mobile surveillance
robots—‘intelligent agents’’ operating in and interact-
ing with the real world. Developing intelligent agents
poses important scientific questions for robotics and
Al such as the relationship between heuristic knowl-
edge and procedural skills. In particular, where and
how should the boundary between heuristic and pro-
cedural programming occur in an intelligent agent? A
second problem concerns the relationship between
planning and plan execution: How much planning can
we develop in advance? And how should the agent
respond when the plan does not succeed?
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To explore such issues, we have studied these prob-
lems within a specific application domain; namely,
planning and executing surveillance missions for a
mobile robot. We have developed systems for dynamic
world modeling and for navigation and locomotion of
a surveillance robot within our laboratory.! We have
investigated knowledge-based coordination of action
and perception using a simulated version of our sur-
veillance robot and a database of simulated environ-
ments. This simulation imitates the functional behavior
of our surveillance robot equipped with a set of sur-
veillance sensors in a changing environment.

Knowledge-based coordination. Our investigation
has led to an architecture in which a production sys-
tem sits at the top of twin hierarchies for perception
and navigation. Lower levels of these hierarchies
assure (1) control at vehicle level, and (2) signal inte-
gration from environmental sensors into a composite
model of the immediate environment (see Figure 1).

The composite model and vehicle level controller
are data-driven processes at roughly the same level of
abstraction within both hierarchies. Above this level,
a number of perception and navigation abilities exist
at what we refer to as the ‘“‘action level’’ in the hierar-
chies. These action level abilities correspond roughly
to human skills. Attempts to implement these abilities
as bodies of rules within the production system soon
convinced us that such an approach was inappropri-
ate. Skills are fundamentally procedural in nature and
are better suited for programming in a traditional
programming language.

The result is an architecture in which rules within
the production system trigger procedures for naviga-
tion and perception. Navigation at this level often
requires considerable information from the percep-
tion hierarchy. As a result, much communication
between navigation and perception occurs without
production system awareness. Procedures using the
composite model of the environment control actions
such as following a wall or maneuvering among
obstacles.
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Figure 1. The system architecture:

An intelligent supervisor controls

parallel architecture for navigation
and perception.
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Control of navigation and perception in an unknown
environment presents difficult problems. Earlier
projects in which we implemented this supervisory
level with procedural programming techniques led to
systems with rigid behavior.? Such research revealed
that top-level control requires the application of
poorly organized knowledge. Thus, we have developed
a system architecture in which the production system
controls perception and navigation hierarchies.

System organization. Figure 1 illustrates system
organization. Twin hierarchies for navigation and
perception are organized as a set of levels according
to the abstraction of processed information and the
speed with which responses are required.

Motors and sensors. At the lowest level, each hier-
archy asynchronously processes raw signals. In the
navigation hierarchy, processing involves closed-loop
control of motors (to maintain a specified velocity) as
well as capture of proprioceptive sensor signals for
estimating position and velocity. In the perception
hierarchy, processing involves sensor signal acquisi-
tion and conversion to an initial symbolic representa-
tion in vehicle coordinates.

Vehicle control and the composite model. At an
intermediate level, both hierarchies represent their
information at an abstraction level based on the vehi-
cle and its environment. At the center of the naviga-
tion hierarchy is a vehicle level controller that accepts
asynchronous commands to move and turn the vehi-
cle. The vehicle level controller also maintains a robot
position-and-velocity estimate, sharing this with the
perception hierarchy. The perception hierarchy
projects the description of new sensor signals into a
common coordinate system, using the projected infor-
mation to update a ‘‘unified’’ composite model of the
environment. As a side effect of the update process,
the perception hierarchy detects errors in the esti-
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mated position and relays these to the vehicle con-
troller.

The action level. Collected procedures operate on
information provided by the vehicle controller and the
composite model. The navigation hierarchy includes
procedures for such tasks as following hallways, fol-
lowing walls, or traveling towards distant beacons.
These procedures necessarily depend on asynchronous
access to perceptual information, made available by a
set of interface procedures for the composite model.
Significant navigation and perception coordination
occurs between procedures at the action level. In
human terms, these action level procedures correspond
to learned human skills such as driving a car or under-
standing the environment in terms of rigid objects.

Surveillance procedures also exist at the action
level—procedures permitting the supervisor to scan
surveillance sensors while continuing with other
activities.

The supervisory level. Controlling twin navigation
and perception hierarchies involves selecting appro-
priate perception and navigation actions to accom-
plish some set of high-level goals. We cannot easily
organize such activity as procedures. Each situation
implies appropriate knowledge—knowledge naturally
expressed as rules organized into contexts. Within
each context, internal facts representing things (such
as goals, external events, or descriptions of the envi-
ronment) trigger rules.

Specifications. Each level in these hierarchies exists
as an independent, asynchronous process. Our sur-
veillance robot uses dedicated microprocessors for
motor control and vehicle control, plus sensor data
acquisition and interpretation. Communication
occurs by message passing over serial communication
lines. Modules for perception actions, navigation
actions, and the supervisor currently reside on an off-
board VAX. These three modules operate as indepen-
dent processes that communicate by message passing,
using the socket mechanism provided by UNIX BSD
4.3. The modules have been designed so that they can
be transferred to on-board microprocessors.

The supervisor is written in OPS-5 running under
Lisp. C functions loaded into Lisp accomplish com-
munication with perception, navigation, and surveil-
lance modules. We have modified the OPS-5 Lisp
code so that messages can be received asynchronously.
Action level procedures can send messages that add
objects to the OPS-5 working memory between
recognize-act cycles.
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The perception system

The robot’s sensors form two classes: environmental
sensors and surveillance sensors. Environmental sen-
sors, operating autonomously and continuously, pro-
vide information describing the local environment’s
structure—whereas surveillance sensors, operating
asynchronously when commanded by the supervisor,
detect intruders.

Environmental sensor data drives a process that
constructs and maintains a composite environmental
model describing geometric, dynamic, and surface fea-
tures within the local environment. This composite
model is the interface between data-driven and
knowledge-driven perception processes.

Integrating sensor data—the composite model. A
dynamically maintained data structure, the composite
model is the perception system’s heart. Our current
system model provides a two-dimensional geometric
description of the limits to free space.’ A separate
project has recently developed a three-dimensional
composite model using motion and stereo.*

The composite model is a geometric description; it
contains no labels for ‘‘recognized’’ objects. The
supervisor, using domain knowledge and procedures
at the action level, interprets structures within the
composite model as known objects.

Parts of the composite model’s matching and
update processes have complexities approximating the
square of the number of elements. To keep cycle time
fast, we have restricted composite model contents to a
few tens of primitives. The system quickly removes
elements from the corresponding composite model
when their presence is not reinforced by sensor signals
or needs of the action level processes. A recency
mechanism mediates such purging. Older elements are
purged from the composite model to restrict the num-
ber of elements to a fixed limit.

The action level interface to the composite model.
Composite model contents are never directly available
to other parts of the system. Instead, these contents
are accessible through interface procedures. Versions
of these primitives exist for both the two-dimensional
composite model® and the three-dimensional compos-
ite model.?

* Visible—Given points A and B, return the iden-
tity of the surface closest to point A that inter-
sects the line from A to B. A return value of nil
indicates that point B is visible from point A.
Figure 2 illustrates procedure Visible.
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¢ Correspond—Given primitive element P, with a
particular position and orientation and a toler-
ance for position and orientation, return the
identity of the primitive element in the model
that “‘best’’ corresponds to the primitive. A
return value of nil indicates that no such primi-
tive can be found in the model.

® FreePath—Given positions A and B as well as a
tolerance, indicate whether the robot may safely
travel from A to B without coming within the
tolerance of an object. Return either nil or the
identity of the first object that the robot might
strike. Figure 3 illustrates procedure FreePath,
which is accomplished by a “‘clipping’’ function.

® FindPrimitive—Given a primitive element with a
set of position-independent attributes and uncer-
tainty tolerances for each of those attributes,
return a list of all occurrences of the primitive in
the composite model.

® Recall—Recall, from a prestored global model,
elements that should be visible from a specified
location. The process adds these new elements
with a very low confidence to the model. In the
next update cycle, the normal update mechanism
removes elements for which no correspondence is
found in the sensor data.? Segments in the global
model are typically more complete than currently
observed segments.

These interface procedures, accessible to the super-
visor and to the action level navigation procedures,
are also used in developing more sophisticated action
level procedures, such as

¢ FindPath—Given a start point and a goal point,
determine a set of straight-line path segments
that will take the robot from the start point to the
goal point without intersecting any of the limits
to free space described in the composite model.
FindPath constructs a path composed of a
sequence of three straight-line movements' and
similar to the two segment paths.? The two alter-
native paths are tested in the composite model. If
both paths are clear, the shorter path is returned.
If only one path is clear, then it is returned. If
neither path is clear, FindPath returns a value of
false. Figure 4 illustrates procedure FindPath.

¢ FindObject—Given a description of an object as
a composition of primitives, return a list of all
such objects in the composite model. FindObject
is implemented by prediction-verification using
pose-clustering.’
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Figure 2. The interface procedure Visible determines
whether a specified point should be visible. If an ele-
ment of the composite model intersects the line from
the composite model to the target point, then the loca-
tion of the intersection and the identity of the element
are returned.
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Figure 3. Procedure FreePath determines whether a
projected path intersects with any element in the com-
posite model.
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Figure 4. Procedure FindPath determines a new path to
a goal point. The path is composed of two intermediate
avoidance points that take the robot around the obsta-
cle and on to the goal. The large rectangles indicate
the test, performed by FreePath, verifying that a pro-
posed path does not intersect or contain a limit to free
space within the composite model. The small rectan-
gles indicate the two avoidance points and the goal.
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which changes in orientation depend on changes in
position (that is, a car’s geometry), Scott Harmon (in
a personal communication with the author) has sug-
gested that time-based parameters for Turn may be
replaced by distance-based parameters. In such cases,
Turn parameters are expressed in degrees per meter,
which translate directly to a steering angle.

Control of trajectory—by specifying degrees per
meter (or degrees per second at a known velocity)—
leads to movement over a set of analytic curves
known as “‘clothoid’’ curves.® Tom Binford refers to
this family as ‘‘Euler Spirals,’’ remarking that Euler
is the first to have reported their existence.

Action level navigation procedures. Control of
local vehicle movéments is inherently procedural. This
level of control corresponds to “‘local navigation.”?
Our system currently uses the following six such
procedures:

® Straight-line travel is given a point in its local
environment, expressed in an external coordinate
system. After verifying that a free path exists to
the point, the robot turns toward the point and
then travels in a straight line. A simple finite-
state automaton assures straight-line travel. The
procedure continues to assure that the path
remains free during movement, using procedure
FreePath (described earlier).

* Pursue—Based on techniques described by Wal-
lace et al.,’ the robot dynamically adjusts its
orientation velocity to pursue a specified point.

* Wall following—The robot travels a specified
tolerance to the right or left of a wall for a speci-
fied distance. The target point is determined by
projecting a target point in front of the vehicle
and then measuring the perpendicular distance to
the wall, as well as the orientation of the wall at
that point, using the composite model. A pew
target point is computed at the specified distance
from the wall and the Pursue function is called
with the target point. The procedure fails if it is
unable to find the wall to the side of the target
point.

Wall measurements are made in the composite
model using function Visible. The procedure also
uses function FreePath to assure that the path is
not blocked by an obstacle.'
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® Hall following resembles wall following, except
that the next goal point is determined by measur-
ing the center point between the walls in front of
the robot. If either wall is missing, a center point
is estimated using the second wall. The procedure
fails if no walls are found.

® Doorway traversal locates the two sides of a
doorway in the composite model. It then deter-
mines a pair of points defining a path to travel
through the center of the door, and uses proce-
dure Straight-line travel along the path.

* Approach—Given a starting location, a target
location, and an approach distance, this proce-
dure determines a path taking the robot to a
point that is the approach distance from the tar-
get. A goal point is computed by projecting a
straight line to the target from the starting point.
Procedure FreePath is used to see if a straight-
line path exists to this goal point. If not, proce-
dure FindPath is used to determine a set of
straight-line path segments to the goal points. If
a path is found, the robot executes the path using
straight-line travel.

Straight-line travel—based on the use of estimated
position maintained by the vehicle level controller and
corrected by the perception hierarchy—is most useful
for navigating in domains where the composite model
is completed by information from a prestored global
model. Pursue is a form of direct pursuit to a point
specified by the supervisor. Hall following and wall
following use direct pursuit to a point determined
from the composite model, and are most useful when
the global model is known to be incomplete. The
supervisor uses Approach to approach and warn an
intruder to leave a restricted area.

The choice of appropriate local navigation proce-
dures depends on the local environment. Such a
choice is best stated as a set of heuristic rules, depend-
ing on knowledge about the environment and the
robot’s mission. In our surveillance robot, each route
in the cartographic knowledge base contains a sug-
gested local navigation mode for traveling along the
route. The supervisor reads the suggested navigation
mode from the cartographic database and calls the
appropriate local navigation procedure. When a navi-
gation procedure is unable to continue, the procedure
halts and notifies the supervisor.
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The surveillance-robot supervisor

The supervisor’s behavior is goal oriented; it is
given a mission as a sequence of navigation and sur-
veillance tasks to accomplish. The mission is decom-
posed into a sequence of actions by a planning stage.
During execution, the supervisor accomplishes each
task by executing the actions of the plan. The supervi-
sor adapts and modifies the plan as needed to accom-
plish the mission goal.

The supervisor is implemented as a production sys-
tem using the OPS-5 language.” The supervisor’s rule
base is organized as contexts according to tactical situ-
ation and current task. The right-hand side of OPS-5
rules can include function calls in Lisp, providing the
interface to action level procedures for navigation,
perception, and surveillance as well as access to the
cartographic database.

The supervisor uses operational knowledge for both
mission planning and mission execution. A major use
of the planning process is to signal impossible tasks. If
specified tasks cannot be completed within allowed
constraints, the operator is notified. The supervisor
can remedy problems by increasing the value of the
maximum constraint or by changing the mission defi-
nition. In mission execution, the supervisor uses its
operational knowledge to react to unforeseen events.

The following subsections describe cartographic and
operational knowledge bases, and outline the specifi-
cation, planning, and execution of a mission.

Cartographic knowledge. Much knowledge
required to plan and execute navigation tasks is carto-
graphic, organized naturally as a network of objects
representing places and routes. A cartographic data-
base is implemented as a network of structures acces-
sible from Lisp functions. The supervisor can recall
the contents of a place or route by calling the Lisp
functions ‘‘get-place’’ or ‘‘get-route,’’ resulting in the
creation of an OPS-5 object that contains attributes
of the route or place. In planning, the supervisor uses
the external function ‘‘generate-nodes.’’ This func-
tion generates objects representing various forms of
travel on each route leading from a place.

A place contains the following fields:

Name—An alphanumeric name for the place;

Location—A Cartesian location for the place;

Tactical zone—The tactical situation at the place;
and

Adjacent places—A list of pairs (place, route) for
adjacent places.
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A route is composed of

Name—A name for the route;

Navigation-action—A suggested navigation proce-
dure for this route;

Length—The length of the route;

Maximum speed—The maximum speed for the
route;

Efficient speed—An efficient speed for the route;

Quiet speed—A speed for minimizing operational
noise; and

Tactical zone—The current tactical zone.

Each route specifies a suggested navigation action.
When the robot travels on a route, it uses this naviga-
tion action to specify an action level procedure. If the
procedure fails, the robot may attempt to continue
using position estimation maintained by odometry
and inertial guidance and assisted by position estima-
tion using the perception hierarchy.

Each place and route in the cartographic knowledge
base is labeled with an attribute identifying the tacti-
cal zone for that place or route. The tactical zone, in
turn, is an important factor in determining the robot’s
behavior. Each zone contains a risk factor, multiplied
by the time spent in the zone, and used as a constraint
in mission planning. Similarly, fuel consumption for a
route is computed by multiplying the distance by a
fuel consumption rate (presented in a table).

The tactical zones are

Friendly—The robot is permitted to travel freely in
this zone. No surveillance activity is required. The
risk factor is 1;

Restricted—The robot can travel freely in this zone,
but maintains vigilance to detect intruders. The risk
factor is 1;

Unknown—The tactical situation is unknown in
such zones. The robot maintains maximum surveil-
lance. The risk factor is 2;

Dangerous—The robot maintains maximum sur-
veillance in such zones. The risk factor is between 2
and 10; and

Hostile—The robot avoids travel in hostile zones
unless explicitly instructed otherwise by the mission
statement. The risk factor is a number greater than
10.

Operational knowledge. The supervisor uses opera-
tional knowledge during planning and plan execution
to determine the robot’s behavior. After conversa-
tions with an expert on military security, we devel-
oped the operational knowledge described here as a
concept demonstration. However, the expert did not
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Table 1. This illustrates compatibility between navigation modes and tactical zones. Preferred speeds are shown
in boldface. MIssion constraints may force the selection of an alternative speed. The supervisor’s planning rules
determineg the choice of speed, but may modify speeds during mission execution. An X marks a speed that may

not be used in the specified zone.

Zones
Mode: Friendly Restricted Unknown Dangerous Hostite
Efficient efficient efficient efficient X X
fast fast fast X X
quiet quiet quiet X X
Rapid: efficient efficient efficient X X
fast fast fast fast fast
quiet quiet quiet quiet quiet
Discreet; efficient efficient efficient X fast
fast fast fast fast X
quiet Quiet quiet quiet quiet
Reconnaissance: officient efficient efficient efficient efficient
X X X X X
quiet quiet quiet quiet quiet

participate in developing the rule base. The opera-
tional knowledge base presented below should be seen
only as a concept demonstration.

The robot can travel at any of three speeds speci-
fied to the robot during mission planning: fast, effi-
cient, and quiet. Table 1 summarizes the permitted
speeds in the different tactical zones for different
navigation modes. Mission planning selects the speed
if mission constraints are not violated. Constraints
may force selection of another speed during the plan-
ning process as described below. An X indicates that a
speed is not permitted in the specified zone.

The current set of modes includes

Efficient—The robot travels at a rate that optimizes
fuel consumption, No surveillance activity occurs;

Rapid—The robot travels as fast as possible. No
surveillance activity occurs;

Discreet—The robot, seeking to avoid detection by
traveling at its quietest speed, maintains a passive sur-
veillance activity using only the infrared and acoustic
sensors in unknown, restricted, hostile, or dangerous
zones; and

Reconnaissance—In friendly zones, the robot
travels efficiently with no surveillance. In unknown,
restricted, hostile, or dangerous zones, the robot
travels at its quietest speed and maintains surveillance
activity using the infrared, acoustic, and ultrasonic
sensors. [n case of detection, the robot notifies the
base and enters one of the reaction modes (described
below).

The following reaction modes are available when
the robot has detected an intruder:
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(1) Monitor—The robot remains stationary and
tracks all intruders, continuously relaying the posi-
tions of all known intruders to the base;

(2) Warn—If it detects an intruder in a restricted
zone, the robot selects and travels to the intruder and
warns it to leave the restricted zone. Continuously
relaying the position of all known intruders to the
base, the robot then remains within a short distance
until the intruder has feft the zone; and

(3) Tail—The robot locks onto and cbserves an
intruder. When the intruder is stationary, the robot
periodically scans the environment to locate other
intruders. If the intruder flees, the robot follows. If
the intruder advances, the robot flees. The robot con-
tinuously retays the position of all known intruders to
the base.

If it is in a reaction mode when the time arrives to
execute its next task, the robot will quit the reaction
and commence the task.

Mission specification and planning. Planning seeks
to (1) decompose the mission into a set of navigation
and surveillance actions, (2) verify that the mission
can be accomplished within specified time, fuel, and
risk constraints, and (3) ensure that the robot has the
necessary cartographic knowledge to execute the
mission.

The main problem in planning is determining the
routes, navigation actions, speeds, and surveillance
actions to be used during the mission. Planning is
accomplished by z form of *“‘graphsearch’ imple-
mented in a set of production rules.® Mission planning
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Figure 5. A sample domain for a surveillance mission:
The small boxes and circles labeled Base and A
through L are places in the network of places. Lines
connecting places indicate routes. The shaded area is
arestricted zone.

is a process of heuristically guided generate and test.
The external procedure ‘‘generate-nodes’’ uses the
cartographic database to generate nodes representing
travel at efficient, fast, and discreet speeds from the
selected place. Operational knowledge then “‘edits’’
these new nodes to eliminate nodes incompatible with
the tactical zone of the selected place.

The following navigation tasks are possible:

Go-To-Place—At the specified time, the robot will
depart for the specified place. Go-To-Place actions
are planned by forward chaining from the start place
to the goal place.

Arrive-At-Place—The robot will arrive at the speci-
fied time and place. Arrive-At-Place actions are
planned by backward chaining from the specified
place and time to determine the appropriate starting
time.

In addition, the navigation task Remain-At-Place
exists in which the robot remains at its current loca-
tion until the time for its next navigation task.

Navigation tasks contain a start time and a comple-
tion time: The start time is specified for the Go-To-
Place task, and planning determines completion time.
However, the next task’s start time places a hard con-
straint on the total time available for the task. Simi-
larly, completion time is specified with the task
Arrive-At-Place, and task planning determines start
time. The completion time of the previous task deter-
mines a hard constraint. Adjacent navigation tasks
determine the start and completion times for the task
Remain-At-Place.

A potential problem exists when an Arrive-At-Place
task follows a Go-To-Place task. Currently, the time
constraint for planning the Go-To-Place task is fur-
nished by the completion time of the Arrive-At-Place
task.
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Specification of a surveillance mission. We cur-
rently specify missions by responding to questions
from a mission specification rule base. Mission tasks
include both navigation and surveillance tasks. We
plan to replace this specification rule base with a
menu-driven specification system. In either case, spec-
ification results in a set of constraints and navigation
tasks describing the mission.

Figure 5 shows a sample domain illustrating a sur-
veillance mission. The following is a sample mission
definition in this domain expressed as sentences in
pseudo English:

Mission Constraints:

Time = 120, Fuel = 20, Maximum risk = 20,
Maximum distance 1000

If detection, use mode Warn.

(1) Attime = 540 Go to place C in mode Efficient.

(2) Attime = 560 Go to place E in mode Sur-
veillance.

(3) Remain at place in mode Surveillance.

(4) At time =600 Arrive at Base in mode Efficient.

This example’s first navigation task generates an
object of type NavTask with a task-type of Go-To-
Place, a start-place of the current place (Base), and a
goal-place of A. The values for goal-zone and
goal-loc are obtained from the external database.
Constraints for distance, time, risk, and fuel are
copied from mission constraints.

Mission planning: Generating possible actions. We
plan the mission by assembling a sequence of naviga-
tion and surveillance actions for each task, conduct-
ing an A * graphsearch that uses route information
from the cartographic database. Each search tree
node contains the current value of a constraint vector
composed of the set (distance, time, risk, and fuel).

For each route leaving the selected place, three
nodes are generated representing travel at a speed that
minimizes fuel, time, or risk. The function generate-
nodes builds nodes containing values for the attrib-
ute’s place and zone using route information in the
cartographic database. A rule set removing newly
generated nodes enforces incompatibilities between
navigation modes and tactical zones.

Constraints on distance, time, risk, and fuel. For
the search to be A*, we must use a heuristic cost that
satisfies optimality criteria identified by Nilsson.®
Each navigation task mode specifies the constraint to
be minimized. Each constraint is based on a linear
function of the distance traveled; therefore, each can
be estimated by a function of the form
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h{node, goal) = C *distance(node, goal)

where C is a positive constant. The Cartesian distance
between two places is less than or equal to the route
distance. Thus, Cartesian distance yields an optimum
search (the first path found is the shortest path). Simi-
larly, any heuristic based on the product of a constant
multiplied by the distance also produces an optimal
search, Thus, any constraint and any linear combina-
tion of constraints may serve as the heuristic cost for
an optimal search. However, constants must not
change during search.

We can minimize time, risk, and fuel costs during
planning. Graph search uses two cost estimates at
each node—g(start, node) and h(ncde, goal). The
function h(} is estimated using the vehicle’s maximum
speed. Costs for g() are accumulated using the speed
proposed in the node. A rule for the specified naviga-
tion mode copies a value for time, risk, and fuel into
the values for g and h. Table 2 presents formulas for
estimating costs.

For each node, we compute estimated values for
time, speed, and fuel use by the external procedure
generate-nodes, based on the values of distance found
in the external database. The fuel efficiency factor is
based on a table of estimated values. The function
generate-nodes adds costs computed for the route to
cumulative costs. Thus, values in the newly created
nodes represent the cumulative value from the mis-
sion’s start. The navigation mode determines which
cost is minimized in the search.

In addition to their potential use as a cost function,
the constraints afso serve as & hard limit for a task.
Any node for which an element of the constraint vec-
tor exceeds a limit is removed. A set of rules compares
these values in nodes of status new to the constraints
for the task. Nodes for which any of these values
exceed the maximum value are removed. Thus, if mis-
sion constraints cannot be satisfied using the specified
default navigation modes, branches of the search tree
using other modes are considered.

The mission plan. In the above mission, the first
navigation task was ‘At time 540 Go to place C in
mode Efficient.”” This generated a set of navigation
actions of the form

straight-line to Place A in mode Efficient
straight-line to Place B in mode Efficient
follow-hall to Place C in mode Efficient

The execution of a surveillance mission. Executing
the surveillance mission is a process of executing navi-
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Table 2. The cost formulas, which are minimized for
each navigation mode.

Mode Cost Formula

Rapid: time = distance /speed

Discreet: risk = risk-factor * time

Efficient: fuel = fuel- efficiency(speed) * time

gation and surveillance tasks at the specified times.
The program executes each navigation task by execut-
ing navigation actions for that task, and executes each
navigation action by simply calling an external proce-
dure at the action level and then monitoring the
procedure’s status. Navigation procedures use percep-
tion procedures to detect obstacles and to maintain an
estimate of the robot’s position. As long as a naviga-
tion action does not fail, the supervisor need only call
a new navigation action as each navigation action
finishes.

Rules based on the current surveillance task and
tactical zone determine surveillance activity specified
in the plan. We will next describe (1) the execution of
navigation actions and reaction to blocked paths, and
(2) surveillance actions and reaction to the detection
of intruders.

Executing the plan. While moving, the supervisor
continually calls the external function GetRobotSta-
tus to monitor the action procedure’s execution. Navi-
gation procedures at the action level directly control
navigation perception processes. Perception informa-
tion does not pass through the supervisor’s working
memory.

In the planning example above, the third navigation
action was to travel from place B to place C. The car-
tographic database for the route from place B to C
indicates a suggested navigation action of follow-hall.
Thus, the supervisor calls the navigation action level
procedure follow-hall to place C. During execution,
the supervisor periodically requests the navigation sta-
tus by sending a message to the navigation procedure.
The navigation procedure replies with a message
indicating the robot’s current position, orientation,
action, and status. This message is translated into an
OPS-5 object of type robstatus, which is put into the
supervisor’s working memory.

The supervisor also calls a perception action (‘‘recall’’)
that constructs a description of the expected local
environment from the global model and proposes this
description to the composite model as a set of hypothe-
sized composite model elements. If the hypothesized
elements match the existing elements in the composite
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model, then these are used as if they had been perceived
by the composite model. If the recalled elements do
not match elements currently in the composite model,
then they are not added to the model.

A navigation action terminates with a status of
““finished,’’ “‘failed,’’ or “‘blocked.’’ If a procedure
returns a finished status, the supervisor so marks the
current navigation action and marks the next naviga-
tion action with a status of ‘‘active.’”” When a naviga-
tion action encounters difficulty by reporting a
blocked or failed status, the supervisor must deter-
mine the cause of the difficulty and specify a new
navigation action. The principal cause of action fail-
ure is a blocked path; however, the supervisor uses
the same technique to respond to failures in wall or
hall following.

Going around obstacles. When a path is blocked,
the robot tries to construct a path around the block-
age by calling an action level perception procedure
FindPath. If it finds a path, then the two intermediate
goal points are returned to the supervisor. The current
navigation action is marked ‘‘suspended,’’ and straight-
line-travel NavActions are created for the two inter- -
mediate goal points.

If the perception procedure FindPath fails, then the
supervisor must rely on the network of places to find
a new path. The supervisor issues a command to the
cartographic database to mark the current route as
temporarily blocked, and replans the current naviga-
tion task. If the replanning cannot produce new navi-
gation actions that respect mission constraints, then
the robot requests permission from the base station to
abandon the mission and return to base.

Surveillance tasks. The supervisor controls surveil-
lance actions as calls to action level surveillance
procedures. The procedure ‘‘scan’’ operates asyn-
chronously from the supervisor. Upon termination of
a scan, the procedures generate an object of the type
Scan-Terminated. The supervisor can then initiate a
new scan by calling the surveillance action.

The supervisor keeps track of targets with an object
list of type Target. When surveillance actions detect a
target, they insert an object of type Detection into
working memory, giving the target’s estimated posi-
tion and identity as well as the sensors that detected
the target and the time of detection. If the target’s
identity is known, the supervisor updates the target
object; otherwise, it creates a new target object.

The surveillance scan does not halt when detection
occurs, but continues asynchronously from the super-
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visor until the scan has completed. The supervisor
keeps track of detections using an object of the type
Target with attributes for identity, kind, status, and
location.

When a target is matched to a detection, the super-
visor updates the target’s attributes; otherwise, the
supervisor creates a new target object with a status of
New. This triggers a call to an external database con-
taining a list of known false alarms with the sensor
that responded, the Cartesian location, and an uncer-
tainty zone. If the target matches a target in the false-
alarm database, the supervisor marks it with a status
of Ignore and it is ignored; otherwise, the supervisor
notifies the base of the detection. A command from
the base station can order the robot to ignore this tar-
get. A second command can add the target to the false
target database.

To avoid false alarms, we have discussed implement-
ing a system of badges for authorized personnel. This
would require badge recognition, perhaps via a coded
electromagnetic or ultrasonic signal.

Reaction mode Monitor. In reaction mode Moni-
tor, the supervisor marks the targets with a status of
Watching at the end of each scan of directional sen-
sors and then repeats the scan. During the scan, detec-
tion of a known target changes that target’s status to
Detected. Targets in mode Watching at the end of a
scan are marked with a status of Questionable. Tar-
gets in mode Questionable at the end of a scan are
removed. Thus, a target must be missed by two con-
secutive scans to be removed.

Reaction mode Warn. In reaction mode Warn, the
supervisor locks onto the target for approach by
marking the target with a status of Tracking. Targets
in mode Tracking trigger a call to the action level
navigation procedure Approach for approaching and
warning the target to leave.

While approaching the target, the supervisor uses a
narrow angle scan to continuously observe the target
with its directional sensors. Before each scan, the
function Visible is first used to verify that the target
should be visible from the current location. The scan
is not performed until Visible reports that the target’s
position should be visible. If the target location
changes, then the supervisor computes a new approach
path and the current goal is superseded by the first
goal on the path. When it is within approach distance
of the target, the robot warns the target to leave the
area, repeats this warning every 30 seconds, and fol-
lows the target until it leaves the restricted zone.
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Reaction mode Tail. When detecting a target in
mode Tail, the supervisor halts any movement and
marks the target with a mode Tailing. As long as the
target remains visible, the robot remains stationary
and the sensors perform a narrow angle search to
track the target. If the target disappears, the robot
travels toward the target’s last known position while
scanning the direction towards that position. The path
to the position is determined by procedure FindPath.

e have described a program that coor-

dinates action and perception in a

mobile surveillance robot, and have

presented an architecture in which twin
hierarchies for navigation and for perception are con-
trolled by a production system. Much of the system’s
functionality is provided by action level procedures at
the hierarchy’s highest levels. In particular, navigation
procedures make heavy use of procedures within the
perception hierarchy. An important source of coordi-
nation between action and perception is thus provided
By these procedures.

A supervisor implemented as a production system
provides task level control. This supervisor chooses
the navigation and perception procedures according to
the mission plan and the local environment. The
supervisor develops the mission plan in a planning
stage before the mission begins. This planning stage
(1) decomposes the mission into subgoals that can be
translated into procedure calls to the task level proce-
dures, and (2) verifies that the mission can be accom-
plished within stated constraints. @
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