
 
Intelligent Systems: Reasoning and Recognition 

 
James L. Crowley 

 
MoSIG M1  Winter Semester 2018-2019 
Lesson 10 5 March 2019 
 
 

Convolutional Neural Networks 
Outline 

Notation.......................................................................2 

Introduction .................................................................3 
Key Equations ............................................................................ 3 

Convolutional Neural Networks. .................................4 
Fully connected Networks. ......................................................... 4 
Local and Stationary Signals ...................................................... 5 
What Window Size?................................................................... 5 
Convolutional Neural Network for images ................................. 6 
Pooling ....................................................................................... 8 

Classic CNN Architectures..........................................9 
LeNet5 ....................................................................................... 9 
AlexNet.................................................................................... 10 
VGG - Visual Geometry Group................................................ 12 

 
 
 
 



Convolutional Neural Networks  
 

10-2 

Notation 
 
xd   A feature.  An observed or measured value.  
  

! 

! 
X    A vector of D  features.   
D   The number of dimensions for the vector    

! 

! 
X  

  

! 

{! x m} 

! 

{ym}  Training samples for learning.  
M   The number of training samples.  

! 

aj
(l )      the activation output of the jth neuron of the lth layer.  

! 

wij
(l )     the  weight from unit i of layer l–1 to the unit j of layer l. 

! 

bj
l      bias for  unit j of layer l. 

! 

"    A learning rate. Typically very small (0.001). Can be variable. 
L   The number of layers in the network.  

! 

"m
out = am

(L ) # ym( )  Output Error of the network for the mth training sample 

! 

" j,m
(l )    Error  for the jth neuron of layer l, for the mth training sample.  

! 

"wij,m
(l) = ai

(l#1)$ j ,m
(l)  Update for weight from unit i of layer l–1 to the unit j of layer l.  

  

! 

"bj ,m
(l) =  # j ,m(l)  Update for bias for unit j of layer l.  



Convolutional Neural Networks  
 

10-3 

Introduction 
 
Key Equations  
 

 Feed Forward from Layer i to j:  

! 

aj
(l ) = f wij

(l)ai
(l"1) +bj

(l)

i=1

N ( l"1)

#
$ 

% 
& & 

' 

( 
) )  

 Feed Forward from Layer j to k:  

! 

ak
(l+1) = f wjk

(l+1)aj
(l) +bk

(l+1)

j=1

N ( l )

"
# 

$ 
% % 

& 

' 
( (  

 

 Back Propagation from Layer j to i:  

! 

"i,m
(l#1) =

$f (zi
(l#1) )

$zi
(l#1) wij

(l )" j,m
(l )

j=1

N ( l )

%  

 

 Back Propagation from Layer k to j:  

! 

" j,m
(l ) =

#f (z j
(l) )

#zj
(l ) wjk

(l+1)"k ,m
(l+1)

k=1

N ( l+1)

$  

 
 Weight and Bias Corrections for layer j: 

! 

"wij,m
(l) = ai

(l#1)$ j ,m
(l)  

         

! 

"bj ,m
(l) =  # j,m

(l )  
 
 Network Update Formulas:   

! 

wij
(l ) " wij

(l ) #$ %&wij,m
(l)  

         

! 

bj
(l ) " bj

(l ) #$ %&bj ,m
(l)  

 
 



Convolutional Neural Networks  
 

10-4 

Convolutional Neural Networks.  
 
Convolutional Neural Networks (CNNs) take inspiration from the Receptive Field 
model of biological vision systems proposed by Hubel and Weisel in 1968 to explain 
the organization of the visual cortex. 
 
Fully connected Networks.  
 
A fully connected network is a network where each unit at level l+1 receives 
activations from all units at level l.    
 
If there are N(l) units at level l and N(l+1) units are level l+1 then a fully connected 
network requires learning N(l)·N(l+1) parameters for level l. While this may be tractable 
for small examples, it quickly becomes excessive for practical problems, as found in 
computer vision or speech recognition.  
 
For example, a typical image may have 1024 x 2048 = 221 pixels.   If we assume, say 
a 512 x 512 =218  hidden units we have 239 parameters to learn for a single class of 
image pattern. Clearly this is not practical (and, in any case unnecessary)  
 
A common solution is to perform learning using a limited size window, and to use all 
possible windows as training data.   This leads to a technique where we fix a window 
size at NxN input units and use all possible, overlapping, windows of size NxN from 
our training data to train the network.  
 
We then use the same learned weights with every hidden cell. The resulting operation 
is equivalent to a “convolution” of the learned weights with the input signal and the 
learned weights are referred to as “receptive fields” in the neural network literature.  
 



Convolutional Neural Networks  
 

10-5 

Local and Stationary Signals 
 
Convolutional Neural Networks (CNNs) are used to interpret image and speech 
signals because both images and speech signals have two interesting theoretical 
properties: They are local and stationary.  
 
1) Local.  Local means that (most of) the required information can be found within a 
limited sized neighborhood of the signal. In fact, image information tends to be 
multi-scale, but this can be easily accommodated by projecting the image onto a 
multi-scale pyramid. Such a representation is “local” at multiple scales, with low-
resolution scales providing context for higher resolution.  This can be referred to as 
“multi-local”.  
 
2) Stationary. A stationary signal is a random (unknown) signal whose joint 
probability density function does not change when shifted in time (speech) or space 
(image).  Image and Speech signals tend to have stationary statistics.  Thus the same 
processing can be applied to every possible (overlapping) window. 
 
There are exceptions to both rules, but these can be handled with established 
techniques.  
 
What Window Size? 
What window size should be used for a feature in a Convolutional Neural Network?   
This tends to depend on depth of the layer. Signal processing analysis can be used 
that the initial layer should not be smaller than 7 by 7.  Surprisingly, many layers of 
smaller windows will often outperform a few layers of larger windows, for the same 
training data.    It is common for authors to use 3x3 or 5x5. There is no clear theory 
(so far) to explain this phenomena or to predict the appropriate window size as a 
function of number of layers, but this is an active area of research. Many researchers 
simply set up a python script to test a range of sizes and layers and experimentally 
discover which works best for a given data set.  
 



Convolutional Neural Networks  
 

10-6 

Convolutional Neural Network for images  
 
The Convolution Equation. 
For a digital signal, s(n), the equation for convolution of a digital filter, g(n) 
composed of N coefficients is:  
 

 

! 

(s *g)(n) = g(m)s(n "m)
m=1

N

#  

 
For image processing, the signal and filter are generally 2D:  s(x,y) and g(x,y).  
where s(x,y) is the image and g(x,y) is a filter (or receptive field) of size WxH 
The formula for 2D convolution is 
 

 

! 

(s *g)(x, y) = g(u,v)s(x "u, y" v)
u=1

W

#
v=1

H

#  

 
In the vision literature this is often written:  

! 

s(x, y)*g(x, y) 
 
Note that a 2D convolution can easily be re-expressed as a 1D convolution by 
mapping successive rows of g(x, y) into 1 long column, g(n) with:  

! 

n = (y"1)H + x  
 
Convolutional Neural Networks 
Classically, receptive fields for image descriptors where designed as filters using 
mathematical principals (or intuition). Convolutional Neural Networks (CNN) 
propose an alternative in which labeled training data is used to automatically learn 
receptive fields for image descriptors. CNN’s almost always outperform systems 
using handcrafted descriptors for domain specific problems where large amounts of 
labeled training data are available.  
 
At each layer of the network, a CNN describes neighborhood around each pixel as a 
vector of K features, computing by as a product with K receptive fields. The number 
of descriptors, K, is referred to as the “Depth” of the layer (number of channels or 
number of features at each sample).  For example, an RGB image is said to have a 
depth of 3. The 2D array of descriptors is sometimes called a feature “map”. 
  
Each descriptor is computed as a weighted sum of the pixels within an N x N window 
followed by a non-linear activation function.  



Convolutional Neural Networks  
 

10-7 

Let P(x,y) be a color image with C columns and R rows
  

! 

! 
P (x, y) =

R
G
B

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
(x, y) 

The first layer of the CNN will describe the image using a scanning-window 
technique, extracting an NxN window for each pixel.  

 
 
 Xx,y(u, v) = P(x-u, y-v) 
 
(assume pixels outside the image return as a zero). The use of x–u and y–v is rather 
than x+u and y+v is purely to assure equivalence with the classical signal processing 
operation of “convolution” in which the filter is “flipped” around x,y.   In reality 
most implementations extract the window with x+u and y+v. Technically, in signal 
processing, this would be called a “cross correlation”. However, “Cross-Correlational 
Neural Network” does not as sophisticated.  
 
For each NxN window, the CNN will compute the product with a vector of K image 
descriptors, Wk(u,v) with a bias bk. 
 

 

! 

zk = Wk (u,v)Xx,y(u,v)
u,v
" +bk = Wk (u,v)P(x #u, y# v)+bk

u,v
"  

 
The weighted sum is then processed with a non-linear activation function, f(), 
typically a sigmoid or a tanh, although in many modern networks this is a relu.  
 

 

! 

ak = f (zk ) = f Wk (u,v)Xx,y(u,v)+bk
u,v
"
# 

$ 
% % 

& 

' 
( (  

 

Because a vector of activations 
  

! 

! a k =

a1
"

aK

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
 is computed for each image position, this 

should properly be written as 
 



Convolutional Neural Networks  
 

10-8 

 

! 

ak (x, y) = f (zk ) = f Wk (u,v)Xx,y(u,v)+bk
u,v
"
# 

$ 
% % 

& 

' 
( (  

 
The result is a “feature map” of k features at each position ak(x,y), with k values at 
each image position (x,y).  
 
The receptive fields, 

! 

Wk (u,v)  can be learned using back-propagation, from a training 
set where each window is labeled with a target class, using an “indicator” image 
y(x,y).  For multiple target classes, the indicator image can be represented as a vector 
image,   

! 

! y (x, y).  More classically, y(x,y) is a binary image with 1 at each location that 
contains the target class and 0 elsewhere.  
  
Hyper-parameters 
 
CNNs are typically configured with a number of “hyper-parameters”:  
 
Depth: This is the number D of descriptors for each position in the feature map. For a 
color image, depth at level 0 would be D=3. If described with 32 image descriptors, 
the depth would be D=32 at level 1.  
 
Stride:  Stride is the step size, S, between window positions.  By default it generally 
1, but for larger windows, it is possible define larger step sizes.  
 
Spatial Extent:  This is the size of the filter, NxN.  
 
Zero-Padding: Size of region at the border of the feature map that is filled with zeros 
in order to preserve the image size (typically N).  
 
Pooling 
Pooling is a form of down-sampling that partitions the image into non-overlapping 
regions and computes a representative value for each region.   The feature map is 
partitioned into small non-overlapping rectangles, typically of size 2x2 or 4x4,  and a 
single value it determined for each rectangle. The most common pooling operators 
are average and max. Median is also sometimes used.  The earliest architectures used 
average, creating a form of multi-resolution pyramid. Max pooling was soon shown 
to work better.   
 



Convolutional Neural Networks  
 

10-9 

Classic CNN Architectures 
 
CNN network architectures continues to be a very popular area of research with 
innovations published nearly every month. Very often, researchers will run a script to 
automatically compare results for variations in hyper-parameters for a benchmark 
data set. The winning set of hyper-parameters (number of layers, depth etc) define a 
new architecture !  Here are some of the earliest and best known architectures.  
 

LeNet5 
One of the very deep learning architectures to outperform classical machine learning 
was LeNet5. Towards the end of the first wave of popularity of Neural Networks in 
the late 80s, several researchers began experimenting with networks composed of 
more than 3 layers.  From 1988,  Yann LeCunn began experimenting with a series of 
such architectures, referred to as LeNet,  for the task of recognizing handwritten 
characters.  
 

 
The LeNet5 architecture (1994) 

 
In 1994 Yann LeCunn showed that LeNet5 provided the best performance for written 
character recognition.  Because processing power, memory and training data were  
very limited at that time, many of the innovations in LeNet5 concerned methods to 
reduce parameters and computing without degrading performance.   
 
Many of the insights of LeNet5 continued to be relevant as more training data, and 
additional computing power enabled larger and deeper networks, because they 
allowed more effective performance for a given amount of training data and 
parameters.  
 
Recall that,  generally, the amount of training required for a network depends on the 
number of parameters to be trained. In addition, for a given network, performance 



Convolutional Neural Networks  
 

10-10 

increases with additional training.  Thus any technique that gives equivalent 
performance with fewer parameters will scale to larger networks.  
 
LeNet5 is composed of multiple repetitions of 3 operations: Convolution, Pooling, 
Non-linearity. Convolution windows were of size 5x5 with a stride of 1, no zero 
padding and a depth of 6.  That is 6 receptive fields are learned for each pixel in the 
first layer. Using 5x5 filters without zero padding  reduced the input window of 32 x 
32 pixels to a layer of composed of 6 sets of 28 x 28 units.  A Sigmoid was used for 
the activation function.  Pooling was performed as a spatial averaging over 2x2 
windows giving a second layer of 6 x 14 x 14.  
 
This was then convolved with 16 5x5 receptive field, yielding a layer with 16 x 
10x10 units. Average pooling over 2x2 windows reduced this to a layer of 16x5x5 
units. These were then fed to two fully connected layers and then smoothed with a 
Gaussian filter to produce 10 output units, one for each possible digit.  
 
Despite the experimental success, LeCunn found it very difficult to publish his results 
in the computer vision and machine learning literatures, which were more concerned 
with multi-camera geometry and Bayesian approaches to recognition.  The situation 
began to change around 2010, driven by the availability of GPUs, and planetary scale 
data (continued exponential growth of the World Wide Web). In addition computer 
vision and machine learning were increasingly organized around open competitions 
for Performance Evaluation on benchmark data sets.  
 

AlexNet 
A classic, hard challenge at the time was the ImageNet competition.  ImageNet is a 
large visual database designed for use in visual object recognition software research. 
The database was presented for the first time as a poster at the 2009 CVPR by 
researchers from Princeton University.  Since 2010, the ImageNet project runs an 
annual software contest, the ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC), where software programs compete to correctly classify and detect objects 
and scenes.  
 
ImageNet crowd-sources its annotation process. Currently more than 14 million  
images have been hand-annotated by the project to indicate what objects are pictured 
and in at least one million of the images, bounding boxes are also provided. Image-
level annotations indicate the presence or absence of an object class in an image. 
Object-level annotations provide a bounding box around the (visible part of the) 
indicated object.  



Convolutional Neural Networks  
 

10-11 

 
Initial champions were statistical recognition techniques using techniques such as 
SIFT and HoG. However, in 2012, Alex Krizhevsky won the competition by 
dramatically large margins, using a technique named AlexNet.  
 
AlexNet, is a deeper and larger variation of LeNet5.  

 
AlexNet Architecture (2010) 

 
Innovations in AlexNEt include:  
 
1. The use of relu instead of sigmoid or tanh. Relus provided a 6 times speed up with 

the same accuracy, allowing more training.  
2. A technique called “dropout” in which randomly chosen units are temporarily 

removed during learning. This regularizes the network preventing over-fitting to 
training data.  

3. Overlap pooling, in which pooling is performed on overlapping windows.  
 
The architecture is composed of 5 convolutional layers followed by 3 fully connected 
layers. Relu is used after each convolution and in each fully connected layer. The 
input image size   of 224 x 224 is dictated by the number of layers in the architecture.  
Larger images are generally texture mapped to this size.  
 
A good implementation can be found in PyTorch.  The network has 62.3 million 
parameters, and needs 1.1 billion computations in a forward pass. The convolution 
layers account for 6% of all the parameters, and consume 95% of the computation. 
The network is commonly trainined in 90 epochs, with a learning rate 0.01, 
momentum 0.9 and weight decay 0.0005. The learning rate is divided by 10 once the 
accuracy reaches a plateau. 
 



Convolutional Neural Networks  
 

10-12 

VGG - Visual Geometry Group   

 
The VGG Architecture (2014) 

 
In 2014, Karen Simonyan and Andrew Zisserman of the Visual Geometry Group at 
the Univ of Oxford demonstrated a series of networks referred to as VGG.  An 
important innovation was the use of very many small (3x3) convolutional receptive 
fields.  The also introduced the idea of a 1x1 convolutional filter.  
 
For a layer with a depth of D receptive fields, a 1x1 convolution performs a weighted 
sum of the D features, followed by non-linear activation. The weights can be learned 
with back-propagation.  
 
A stack of convolutional layers is followed by three Fully-Connected layers: the first 
two have 4096 channels each, the third performs classification and thus contains one 
channel for each class ( 1000 channels for ILSVRC).  The final layer is the soft-max 
layer. The configuration of the fully connected layers is the same in all networks. All 
layers use Relu activation.   
 


