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1. Scale Space 
1.1. Resolution, Scale, Sample Rate and Locality 
 
In computer vision, the scale of an entity refers to its “spatial extent“ (or size).  This 
can be formalized as the length of the largest line segment that can be contained 
within the entity. This is the physical locality over which an entity may be “seen”. 
The spatial extent (largest line segment) can be used to define the notion of locality. 
That is the spatial extent of the window that must be analyzed to recognize the entity.   
 
However, this does not tell us how many pixels we need.  
 
Resolution refers to the smallest distance for which two entities can be discriminated.  
The term refers to our ability to “resolve” separate entities.  
 
Resolution determines the spatial sample rate required to represent the contents of the 
window. However, it is always possible to use more pixels than the required. The 
window can be oversampled. This does not necessarily add additional information.  
 
Obviously, resolution and scale are related. But they are sometimes confused.  
 
One way to think of this is to see scale as the physical size of the window that is 
required to see an entity, and resolution as the minimum number of pixels that must 
be used to represent the window.    
 
1.2. Scale Space 
 
 
In most natural images, information can be found at multiple scales. In general 
information at larger scales provides context for information at smaller scales.   
 
To recognize information at multiple scales, we represent the image in a “scale 
space” and detect interest points that serve as anchor points for description and 
recognition.  
 
Images at different scales can be represented with different resolutions (sample rates).  
The result is a multi-resolution pyramid representation of scale space.  
This can greatly accelerate recognition at larger scales.  
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1.3. Definition 
 
Let P(x, y) be a 2-D image where (x, y) are real values, 
Let  G(x, y, σ) be a Normalized Gaussian function of scale σ, with real valued σ. 
 

 

€ 

G(x, y,σ ) =
1

2πσ 2 e
−
(x2+y2 )
2σ 2   

 
The variable, σ, determines the “scale” of the Gaussian.  
 
If we consider σ to be a free variable we can define a continuous 3D space P(x, y, s).  
This is referred to as a “Scale Space”.  

 

y 

x x 

Scale 
(Resolution) 

 
 
Formally, a scale space is the convolution of the image with Gaussians over a 
continuous range of scales, s.  
 

P(x, y, s) = P(x, y)*G(x, y,σ s )  where   σ s =σ 0
s

 
 
Recall that the definition of convolution for continuous x, y is:  
  

 P(x, y, s) = P(x, y)*G(x, y,σ s ) = P(x −u, y− v) ⋅G(u,v,σ s )du,dv∫∫  
 
While scale space is formally defined for a continuous range of scales, it is typically 
computed at a discrete, exponential set of scales, σ s  
 
Invariance requires that these be sampled along a logarithmic scale.  
That is, for some value of base scale, σ 0 ,  σ s =σ 0

s  
 
Typically the base value is σ 0 = 2 , but any value greater than 1 may be used.  
Values of σ 0 = 2  are also common. 
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1.4. Detecting Keypoints in Scale Space 
 
Differential Geometry can be used to find invariant structures for matching and 
tracking in scale space.  Such structures typically correspond to peaks and ridges in 
the first or second derivatives, but can also be found with zero crossings or with level 
crossing curves.    
 
Local extrema (peaks) in the first of second derivative are commonly used to define 
“interest points” for tracking or matching.   These can be computed using: 
1)  The Gradient Magnitude or  
2)  The Laplacian (second derivative).  
 
The Laplacian of the image is 

€ 

∇2P(x, y, s) = P *∇2G(x, y,σ s ) = Pxx (x, y, s)+Pyy(x, y, s) 
When evaluated over an exponential range of scales, the Laplacian gives a “laplacian 
profile.  This is an invariant descriptor for appearance. 
 
The  Laplacian profile is invariant to rotation and translation and equivariant to 
changes in scale. Since scale is proportional to distance, the profile is equivariant to 
viewing distance. 
 

 σs
 

x 

y 

∇2P(x, y, s) 

   
 
A change in viewing distance at x, y shifts the function ∇2P(x,y,s) in s.  The form of 
the profile translates in scale  but remains the same.  Technically this is called a 
“covariant”. 
 
A Laplacian interest point is found by  

€ 

(xi , yi , si ) = local −max
x,y,s

{∇2P(x, y, s)} 

Local-Max{} returns any point (x, y, s) for which the value of the function is larger 
than all neighbors within some distance ε.  
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1.5. Invariance to Changes in Position, Orientation and Scale 
 
Landmarks, or keypoints, in scale space can be used to define structures.   Keypoints 
are typically found as maximum in the Gradient (first derivative) or Laplacian 
(second derivative). Structures of keypoints can be used to prove a description of 
appearance that is invariant (or equi-variant) to changes in position, orientation and 
scale. 
 
For example, translating a region of an image by ∆x, ∆y results in translation of the 
structural description of the region by ∆x and ∆y in scale space. This should be called 
equivariance. Similarly, rotation of the region by an angle results in a rotation of the 
structure of keypoints.  Rotate the image of an object by θ in x, y and the structure 
rotates by θ in P(x, y, s).  
 
Structures of keypoints are also scale invariant. When an object in an image is made 
larger or smaller by a factor of D  = 2d    
 
 P(x,y) → P(x2d, y2d) 
 
Then the structure that describes the object is translated by d in the scale axis 
 
 P(x, y, s) → P(x,y,s+d)   
 
Note that the scale invariance requires that the scale axis be logathmic.  
An exponential scale axis is necessary for scale invariant image description. 
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2. Image Pyramids 
 
Scale space is an abstract mathematical construct. To compute the scale space 
representation of an image we must sample scale space in x, y and in s.  
 
Let P(x, y) be an image array of size RxC pixels, where (x, y) are integers instead of 
reals.   A discrete scale space is:  
 
 

€ 

P(x, y,k) = P(x, y)*G(x, y,σ k )  
 
where the convolution is defined using a sum:  
 
 P(x, y,σ k ) = P(x, y)*G(x, y,σ k ) = P(x −u, y− v) ⋅

u,v
∑ G(u,v,σ k )  

For example, we can use a step size of σo= 2 so that  
 
 σk =2k   For k=0 to K.   
 
At k=0 :  σk =20=1.   σ=1 is the smallest scale that we can represent.  
The largest value, K, is determined by the size of the image.  
Let M = min(R, C).    K=Log2(M)   
 
For k > K the scale parameter σ is larger than the image and the scale space signal 
rapidly converges to a constant value.   
 
2.1. Spatial Resampling and Image Pyramids 
 
Recall that  P(x, y, k) is defined for integer x, y, k.  
The Gaussian, G(x, y, σ), is a low pass filter.  
 
As σ  grows it becomes possible to resample the image with a larger step size without 
loss of information.  
 
We can replace (x, y) with (i·∆x, j·∆y).  
 
 G(x, y, σk ) → G(i·∆xk, j·∆yk, σk ) 
 
Where ∆xk and  ∆yk are determined by  σk 
 
The images in the discrete scale space can be re-sampled using a sampling operation 
S∆x{} 
 
 P(i, j, k) =S∆xk{P(x,y,k)} =P(i∆xk, j∆yk, k)  



 5-7 

 
A resampled scale space is known as a pyramid, and can be written as  
 
 P(i, j, k) =P(i∆xk, j∆yk, k)  
 
Shannon’s sampling theory shows that the sample size at each ∆xk,  ∆yk can grow in 
proportion to σk.    In the previous lecture we saw that  σ  ≥ 1.  This implies that for 
any value of k,   σk  ≥ ∆xk.   
 
It is common to use  ∆xk = σk =2k   However, while this keeps the algebra simple,  
using, ∆xk =σk  results in substantial noise from aliasing.  
This can be remedied by using σk =2k+1 and ∆xk =2k.  
 
2.2. Optimization of the Pyramid Algorithm 
 
A direct computation of scale space requires convolving the image with a series of 
exponentially larger Gaussian Filters:  
 

 

€ 

P(x, y,k) = P(u − x,v− y)G(u,v,σ k )
v=−Rk

Rk

∑
u=−Rk

Rk

∑  

 
Where  

€ 

Rk = 3σ k  giving an N x N computation where 

€ 

N = 2Rk +1= 6σ k +1.  
Each convolutions costs O(N2) operations.  
 
We can gain some improvement by noting that the Gaussian is separable, giving a 
convolution that costs 2N rather than N2.  
 
 

€ 

P(x, y,k) = P(x, y)*G(x, y,σ k ) = P(x, y)*G(x,σ k )*G(y,σ k )  
 
However, for  

€ 

σ k = 2k+1 we still have an exponential growth  

€ 

σ k = (2, 4,8,16,...). 
For an image of RxC pixels, where C >R  this still requires O(R2) operations.  
For a 210 by 210  image, this is O(220) operations.  
 
To overcome this exponential growth, we can use each level in the pyramid to 
compute the next level. This yields a form of recursive algorithm referred to as 
“cascade convolution”.  To develop this algorithm, we call the scale property of 
Gaussian Filters from lecture 4.  
 
 

€ 

G(x, 2σ ) =G(x,σ )*G(x,σ ) =G(x,σ )*2  
 
Where the exponent “*2” represents the convolution of 

€ 

G(x,σ ) with itself.  
To double the scale of a Gaussian we need a cascade of 4 convolutions:  
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€ 

G(x,2σ ) =G(x,σ )*G(x,σ )*G(x,σ )*G(x,σ ) =G(x,σ )*4  
 
This says that we can use level k of the pyramid to compute level k+1.  
 
 

€ 

P(x, y,k +1) = P(x, y,k)*G(x, y,σ k )
*4 = P(x, y)* G(x,σ k )

*4[ ]* G(y,σ k )
*4[ ] 

 
However, we still have an exponential growth in 

€ 

σ k .  To reduce this we note that 
there is no need to compute the convolution at image positions that are removed by 
resampling.  
 
This yields the optimized pyramid algorithm: Cascade convolution with resampling:  
 
 

€ 

P(i, j,k +1) = P(i / 2, j / 2,k)*G(x, y,σ 0 )
*4  

 
The computational cost of this algorithm is linear with the number of rows and 
columns.  
 
2.3. Scale Invariant Pyramids 
 
Resampling P(x, y, k) at ∆xk ~ σk   results an identical impulse response at each level.  
 
An impulse response is the output of a convolution when the input is a single impulse 
(Dirac Delta function).  The following figure show the “impulse response” for a Scale 
Invariant pyramid at 6 different scales, computed using a fast O(N) algorithm.  
 

  
 
Pyramid samples are at discrete positions (i∆xk, j∆xk)  for integer values of i, j:   
 
P(i, j, k) =P(i∆xk, j∆xk, k)  
 
The position in the original image of a sample from level k is  x = i∆xk and y = j∆yk  
If we sampling at a scale step of ∆xk = 2k  this gives a  "full octave" pyramid.   
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It is also possible to build a scale invariant pyramid with a step size of  ∆xk = 2k/2  
using ∆xk  = 2k/2   This is known as a “half-octave” pyramid.  
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The Half-octave pyramid requires a re-sampling algorithm is somewhat complex and  
beyond the scope of this class. For today we will use a full octave pyramid to explain 
the principles of pyramids and scale space.  
 
Note that for an image of size N=RxC pixels, direct computationi of an image 
pyramid  costs O(N Log N) operations because the pyramid is composed of Log(N) 
resampled image, and each costs O(N) to compute.  However a very fast recursive 
algorithm with cost of  O(N) exists. This is also beyond the scope of today’s class.  
 
2.4. Computing Image Derivatives with a Gaussian Pyramid 
 
It is possible to use the Gaussian Pyramid to compute image derivatives at scale using 
sums and differences. These are very similar to the receptive fields observed in the 
visual cortex of mammals.  
 
Let P(x, y) be an image array of size RxC pixels, where (x, y) are integers, 
 
A full octave Gaussian pyramid of the image is a resampled set of images resulting  
from the  convolution of  image  with Gaussians at an exponential set of scales. 
 
 P(x, y, k)  =  P * G(x, y, σk)  
 
 P(i, j, k) =P(i∆xk, j∆yk, k) 
 
 where ∆xk = ∆yk = 2k and σk =2k+1  and  x = i∆xk   and y=j∆yk 
 
For any sample P(i, j, k) the position in the original image is  x = i∆xk and y = j∆yk  
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A pyramid of image derivatives can be defined as the convolution of image with 
derivatives of Gaussians 
 
 

€ 

Px (x, y,k) = P *Gx (x, y,σ k ) 
 
With the Gaussian Pyramid, we can obtain a fast approximation for Gaussian 
derivatives by sum and difference of the samples of the Gaussian pyramid.  
 
Then can approximate the Gaussian Derivatives at each scale using sums and 
differences of samples of the pyramid:  
 
 

€ 

Px (i, j,k) ≈ P(i+1, j,k)−P(i −1, j,k) = P(i, j,k)∗ –1 0 1[ ]  

 

€ 

Py(i, j,k) ≈ P(i, j +1,k)−P(i, j −1,k) = P(i, j,k)∗
−1
0
1

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 
 

 

€ 

Pxx (i, j,k) ≈ P(i+1, j,k)− 2P(i, j,k)+P(i −1, j,k) = P(i, j,k)∗ 1 −2 1[ ] 

 

€ 

Pyy(i, j,k) ≈ P(i, j +1,k)− 2P(i, j,k)+P(i, j −1,k) = P(i, j,k)∗
1
−2
1

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 
 

€ 

Pxy(i, j,k) ≈ P(i+1, j +1,k)−P(i −1, j +1,k)−P(i+1, j −1,k)+P(i −1, j −1,k) = P(i, j,k)∗
−1 0 1
0 0 0
1 0 −1

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 

 
The following are some numerically evaluated examples published in the Scale Space 
Conference of 2003.  [Crowley-Riff 2003]  
 

     
Gx(i,j,k) Gy(i,j,k) Gxx(i,j,k) Gyy(i,j,k) Gxy(i,j,k) 

 
 

 
Impulse Response for Gx(i,j,k) 

 
Impulse Response for Gxx(i,j,k) 

 
Impulse response for Gaussian derivatives for pyramid levels k=0,1,2,3,4,5.  
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2.5. Color Opponent Receptive Fields 
 
A color opponent space is useful for illumination invariance 
 

 (R, G, B) ⇒ (L, C1, C2)  
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This representation separates luminance and chrominance.  
 
 

 

  

 

 

 

 

 
RGB  B-W R-G R+G-B 

 
Color opponent space can be used to build color opponent receptive fields.  
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We then compute 3 pyramids:  L(i, j, k), C1(i, j, k), and C2(i, j, k), 
 

 
Examples of color opponent receptive fields.  
 
Color opponent receptive fields can be steered in color to provide color invariance.  
This gives us a feature vector for local appearance:  
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€ 
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This can be generalized to include multiple scales and higher order derivatives.  
The result is tensor who dimensions as x, y, c, σ, θ, d 
 
where c represents the color channel (L, C1 or C2) and d represents the derivative 
order.  
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3. Scale Invariant Interest Points and the Laplacian profile 
 
Scale invariant interest points  (or feature points) can be computed within a Pyramid 
with a Gradient (First derivative) or a Laplacian (Second derivative).  
 
Recall that the Laplacian of the image is  
 
 

€ 

∇2P(x, y, s) = P *∇2G(x, y,σ s ) = Pxx (x, y, s)+Pyy(x, y, s) 
 
As described above, a Laplacian profile for an image point is the Laplacian of the 
image computed over a continuous (exponential) range of scales. 
 
 A Laplacian interest point is   

€ 

(xi , yi , si ) = local −max
x,y,s

{∇2P(x, y, s)} 

 
Such interest points can be computed directly from a difference of levels in the 
Gaussian pyramid. For a Gaussian Scale Space, we can show that:  
 
 

€ 

∇2Gx (x, y,σ ) =Gxx (x, y,σ )+Gyy(x, y,σ ) =
∂G(x, y,σ )

∂σ
 

 
As a consequence:     ∇2G(x, y, σ)  ≈  G(x, y, σ1) – G(x, y, σ22

)   
 
This is called a "Difference of Gaussians" (DoG) and requires    σ1 ≥ 2  σ2 
Thus the Laplacian of the image can be approximated as the difference at adjacent 
pyramid levels from a Gaussian Pyramid.  
 
 ∇2P(x, y, k) =  P(x, y, k) – P(x, y, k–1)   
 
We can detect scale invariant interest points local maxima in the Laplacian using the 
DoG:   
 
 

€ 

xi , yi , si = local −max
x,y,k

{P(x, y,k)−P(x, y,k −1)}  

 
Note that the points must be at the same image position (x,y).  If the pyramid is 
resampled then we cannot simply use (i,j).  We must use x = i∆xk  and   y = j∆yk to 
assure that the sample are at the same image position. 
 
A difference in scale in the pyramid levels is ∆σ=2 is not precise.  
A value of  ∆σ=√2 is more accurate. 
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3.1. Natural Interest points from the Laplacian at half octave scales.  
 
David Lowe used the scale invariant pyramid to define “Natural” interest points.  
These are used in the SIFT image descriptor.  
(SIFT = Scale Invariant Feature Transform) 
 
To obtain a natural interest point with a scale precision of less than ∆σ=2 we can use 
cascade convolution within each pyramid level. 
 
Consider a pyramid image at level k:  P(i, j, k) with σk  
 
Recall that  G(i, j, √2)=  G(i, j, 1)*G(i, j, 1) 
 
we compute:  
 P(i, j, k)      σk  
 P1(i, j, k) = P(i, j, k) * G(i, j, 1)   σk1 = √2 σk

 

 P2(i, j, k) = P1(i, j, k) * G(i, j, 1)* G(i, j, 1)  σk2  = 2 σk
 

 P3(i, j, k) = P2(i, j, k) * G(i, j, 2)   σk2 = 2√2 σk
  

 P4(i, j, k) = P3(i, j, k)  * G(i, j, 2) * G(i, j, 2) σk2 = 4 σk 
 
For each pixel, we can then calculate 4 Laplacian values:  
 
 Lk0 = P1(i, j, k) – P(i, j, k) 
 Lk1 = P2(i, j, k) – P1(i, j, k) 
 Lk2 = P3(i, j, k) – P2(i, j, k) 
 Lk3 = P4(i, j, k) – P3(i, j, k) 
 
If Lk0 < Lk1 > Lk2 then the point P(i, j, k) is a natural interest point at with σ =  √2 σk

   
If Lk1 < Lk2 > Lk3 then the point P(i, j, k) is a natural interest point with σ =  2 σk 
 
The position of the natural interest point is  x =  i · 2k, y = j · 2k- 
 
This is similar to the method used to find natural interest points in the SIFT detector.   
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3.2. Interest points from Gradient Magnitude 
 
We can also compute an intrinsic scale for the Gradient magnitude.   
 

 The Gradient 
  

€ 

! 
∇ P(x, y, s) =

Px (x, y, s)
Py(x, y, s)
# 

$ 
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& 

' 
( =

P *Gx (x, y, s)
P *Gy(x, y, s)
# 

$ 
% 

& 

' 
(  

 
For any image point (x,y) the intrinsic scale can be computed from  
 
 

  

€ 

si = local−max
s

{
! 
∇ P(x, y, s) }  

 
These are positions in the image that can serve as landmarks for tracking or 
recognition.  
 
In a scale-invariant pyramid, the gradient is available at any sample in the pyramid as  
 

 
  

€ 

! 
∇ P(i, j,k) =

Px (i, j,k)
Py(i, j,k)
# 

$ 
% 

& 

' 
( =

P(i+1, j,k)−P(i −1, j,k)
P(i, j +1,k)−P(i, j −1,k)
# 

$ 
% 

& 

' 
(  

 
For the image gradient, a scale invariant interest point is  
 
 

  

€ 

ii , ji ,ki = Local−max
i, j,k

{
! 
∇ P(i, j,k) }  
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4.  Histogram of Oriented Gradients (HOG) 
 
A local histogram of gradient orientation provides a vector of features image 
appearance that is relatively robust to changes in orientation and illumination.   
 
HOG gained popularity because of its use in the SIFT feature point detector 
(described next). It was subsequently explored and made popular by Navneet Dalal 
(M2R GVR 2003) and Bill Triggs (currently at UGA Labo LJK).  
 
Recall:  The orientation of a gradient at pyramid sample (i,j,k) is:  
 

 

€ 

θ(i, j,k) =Tan−1
py(i, j,k)
px (i, j,k)

$ 
% 
& 

' 
( 
) 

 

 
This is a number between 0 and π. We can quantize it to a value between 1 and N 
value by  

 a(i, j,k) = Round N ⋅θ(i, j,k)
π

#
$
%

&
'
(

 

 
We can then build a local histogram for a window of size WxH, with upper left 
corner at io, jo, k.  We allocate a table of N cells: h(a). Then for each pixel i,j in our 
window:  
 
  

€ 

∀
i=1

W
∀
j=1

H
h(a(i+ io, j + jo ,k)) = h(a(i+ io, j + jo ,k))+1 

 
The result is a local feature composed of N values.  
Recall that with histograms, we need around 8 samples per bin to have a low RMS 
error. Thus a good practice is to have  N=W=H.  For example N=4, W=4 and H=4. 
Many authors ignore this and use values such as N=8, W=4, H=4, resulting in a 
sparse histogram.  
 
Remark:  A fast version when N=4 replaces the inverse tangent by computing the 
diagonal derivatives with differences:  
 
 

€ 

Pπ
4

(i, j,k) = P(i+1, j +1,k)−P(i −1, j −1,k)  

 

€ 

Pπ
2

(i, j,k) = P(i, j +1,k)−P(i, j −1,k)  

 

€ 

P3π
4

(i, j,k) = P(i+1, j −1,k)−P(i −1, j +1,k) 

 

€ 

Pπ (i, j,k) = P(i+1, j,k)−P(i −1, j,k)  
 
To determine a(i,j,k) simply choose the maximum.  
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5. Scale Invariant Feature Transform (SIFT) 
 
SIFT uses a scale invariant pyramid to compute scale invariant interest points  as 
shown above.  
 
 Lk0 = p1(i, j, k) – p(i, j, k) 
 Lk1 = p2(i, j, k) – p1(i, j, k) 
 Lk2 = p3(i, j, k) – p2(i, j, k) 
 Lk3 = p4(i, j, k) – p3(i, j, k) 
 
If Lk0 < Lk1 > Lk2 then the point p(i, j, k) is a natural interest point at with σ = 2k+1/2   
If Lk1 < Lk2 > Lk3 then the point p(i, j, k) is a natural interest point with σ = 2k+1 
 
For each interest point, it then computes a  U x V grid of HOG detectors with N=8, 
W=4, H=4 at the level k 
Typically U=V=4.  
 
 At level k,  ∆i=∆j=2 k/2 

 
This gives 16 x 8 = 128 features at each interest point.  
This feature vector is invariant to changes in position and scale and very robust with 
changes in image plane rotation and illumination intensity.  
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 

 
Various authors experiment with other grid sizes.  
For example, let the grid size be G.  
 
 G=4,  W=4, H=4, N=4 
 
Gives 64 features.  
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6. Harris Corner Detector 
 
Harris, Chris, and Mike Stephens. "A combined corner and edge detector." Alvey 
vision conference. Vol. 15. 1988. 
 
The Harris-Stevens Corner detector is inspired from the Moravec Interest Point 
detector proposed in 1973 by Hans Moravec for stereo matching.  Moravec used the 
Sum of Squared Difference (SSD) between adjacent small patches to detect interest 
points.  In 1988, Harris and Stevens observed that this is equivalent to an auto-
correlation of the image.   
 
 

€ 

S(x, y) = w(u,v) I(u + x,v+ y)− I(u,v)( )2
u,v
∑  

 
where   

€ 

I(x, y)  is the image,  
   w(x,y) is some window function, typically Gaussian.  
 
 I(u+x,v+y) can be approximated as a local Taylor Series:  
 
 

€ 

I(u + x,v+ y) ≈ I(u,v)+ I x (u,v)x+ I y(u,v)y  
 
where  

€ 

I x (x, y) and 

€ 

I y(x, y) are the local x and y derivatives 
 
Giving  

€ 

S(x, y) = w(u,v) I x (u,v)x+ I y(u,v)y( )2
u,v
∑  

Which can be written in Matrix form as:  

€ 

S(x, y) ≈ x y( )A
x
y
# 

$ 
% 
& 

' 
(   where A is the 

“Structure Tensor” 
 

 

€ 

A = w(x, y)
I x I x I x I y
I x I y I yI y

" 

# 
$ 

% 

& 
' 

x,y
∑    

With our Gaussian pyramid this is simply:  

€ 

A =
Px
2 PxPy

PxPy Py
2

" 

# 
$ 

% 

& 
'  

 

Compute the Eigenvectors of A:  

€ 

λ1 0
0 λ2

# 

$ 
% 

& 

' 
( = R A RT  

 
where 

€ 

λ1 is the maximum  gradient, 

€ 

λ2  is the minimum gradient.  
 
if 

€ 

λ1 ≈ 0  and 

€ 

λ2 ≈ 0  then the point is of no interest 
if 

€ 

λ1 ≈ 0  and 

€ 

λ2 >> 0  then the point is a horizontal edge 
if 

€ 

λ1 >> 0   and 

€ 

λ2 ≈ 0  then the point is a vertical edge 
if 

€ 

λ1 ≈ λ2 >> 0    then the point is corner 
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To avoid computing the eigenvalues (requires a square root), we can define a 
measure for “corner-ness”:  
 

 

€ 

Mc = det(A)−κ ⋅Trace2 (A) = λ1λ2 −κ λ1 +λ2( )2  
 
where κ is a tunable sensitivity parameter.  
 
Examples of Harris-Stevens Corners:  
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7. Ridge Detection.  
 
The Eigenvalues of the Hessian provide a popular ridge detector.  
 

The Hessian at scale s is 

€ 

H (x, y, s) =
Pxx (x, y, s) Pxy(x, y, s)
Pxy(x, y, s) Pyy(x, y, s)
" 

# 
$ 

% 

& 
'  

 
The Eigenvalues are found by diagonalizing the Hessian.  
For any point in scale space (x, y, s)   
 

 

€ 

Prr 0
0 Pss

" 

# 
$ 

% 

& 
' = R H RT   where  

€ 

R =
cos(θ ) −sin(θ )
sin(θ ) cos(θ )
$ 

% 
& 

' 

( 
)  

 

€ 

Pss  is the largest value in second derivative, while 

€ 

Prr is the smallest.   
On a ridge point, 

€ 

Prr  will be the second derivative along the ridge (close to zero) 
while 

€ 

Pss  will be the 2nd derivative perpendicular to the ridge.  
 
For any 2D Matrix, the principal directions can be computed directly as  
 

 

€ 

cos(θ) =
1
2
1+

Pxx −Pyy

Pxx −Pyy( )2 + 4Pxy
2

$ 

% 

& 
& & 

' 

( 

) 
) ) 
 ,    

€ 

sin(θ) = sgn(Pxy )
1
2
1−

Pxx −Pyy

Pxx −Pyy( )2 + 4Pxy
2

$ 

% 

& 
& & 

' 

( 

) 
) ) 
 

 

Recall that the gradient is 
  

€ 

! 
∇ P(x, y, s) =

Px (x, y, s)
Py(x, y, s)
# 

$ 
% 

& 

' 
( =

P *Gx (x, y, s)
P *Gy(x, y, s)
# 

$ 
% 

& 

' 
(  

 
for any point (x, y, s), the Gradient can be aligned with the ridge using  
 
 

€ 

Pr = cos(θ)Px − sin(θ )Py  
 

€ 

Ps = sin(θ)Px + cos(θ )Py  
 
A positive ridge point is any point, R(x,y,s) that satisfies:  
 
 Pr = 0 and Prr ≤ 0 and | Prr| ≥ |Pss| 
 
A negative ridge is any point for which   
 
 Pr=0 and Prr ≥ 0 and | Prr|≤ |Pss| 
 
of course, Pr  will rarely be exactly zero, so we use form of approximation Pr ≈ 0 
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The ridge direction at (x, y, s) is:  

€ 

cos(θ) =
Px

Px
2 +Py

2
 

€ 

sin(θ) =
Py

Px
2 +Py

2
 

 
A Maximal ridge is a ridge point 

€ 

R(x, y, s) for which  

€ 

local−max
s

{∇2P(x, y, s)} 
 
Examples of Maximal Ridge points:  
 

 
 

 
 


