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Notation 
x   a variable 
X   a  random variable (unpredictable value)   
V   The number of possible values for X (Can be infinite).   
  

€ 

! x  →     A vector of D variables.   
  

€ 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

€ 

! x 
 
 or   

€ 

! 
X  

k   index for cluster, data source or GMM Mode 
K   Total number of clusters, or sources, of events 
M   Total number of sample events.  

   

€ 

M = Mk
k=1

K

∑  

  

€ 

{
! 
X m}   A set of M Sample Observations (a training set) 

  

€ 

{! y m}    A set of indicator vectors for the training samples in   

€ 

{
! 
X m}  

     

€ 

! y m  indicates the source  Sk for each training sample   

€ 

! 
X m  

Note that     

€ 

! y m  can be a binary vector with k rows (1 for Sk and 0 for others) o r 
     

€ 

! y m  can be the probability that   

€ 

! 
X m ∈ Sk  

    
  

€ 

h(k,m) =
! y 1 "

! y m( )  Indicator variables in matrix form.  k rows, m columns 
 

Expected Value:   

€ 

E{X} =
1
M

Xm
m=1

M

∑  

Gaussian or Normal Density:   

    

€ 

N (
! 
X ; ! µ ,  Σ) =

1

(2π)
D
2 det(Σ)

1
2

e– 1
2

(
! 
X – ! µ )T Σ–1 (

! 
X – ! µ )
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Multivariate Normal Density Function 
 
The "Central Limit Theorem" tells us that whenever the features an observation are 
the result of a sequence of N independent random events, the probability density of 
the features will tend toward a Normal or Gaussian density.  
  

 

    

€ 

p(
! 
X ) = N (

! 
X ; ! µ ,Σ) =

1

(2π)
D
2 det(Σ)

1
2

e
–1
2
(
! 
X – ! µ )T Σ−1(

! 
X – ! µ )

 

 
Where the parameters   

€ 

! 
µ ,  Σ and the mean and co-variance of the density. These are 

the first and second moments of the density. 
 
Note that we use upper case for probabilities and lower case for functions. 
Thus  P(ω) is a value, p(X) is a function. 
 

The mean is 

  

€ 

! 
µ = E{

! 
X } =

E{X1}
E{X2}
...

E{XD}

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=

µ1
µ2

...
µD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

and the Covariance is    

  

€ 

Σ = E{(
! 
X – E{

! 
X })(

! 
X – E{

! 
X })T} =

σ11
2 σ12

2 ... σ1D
2

σ 21
2 σ 22

2 ... σ 2D
2

... ... ... ...
σ D1
2 σ D2

2 ... σ DD
2

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
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Gaussian Mixture Models 
Gaussian Mixtures as  a Sum of Independent Sources 
 
We can consider a sequence of random trials as a "source" of event 
 
 

 S  Source:  X   
 
The central limit theorem tells us that in this case, the result of many independent 
random events will converge to a Normal density function:  
 
     

€ 

p(
! 
X ) = N (

! 
X ; ! µ ,Σ)  

 
Sometimes a population will result from a set of K different sources, Sk, each with it 
own unique independent random variables.  
 

 

  S  S1:  

 S  S2:  

 S  S3:  

X  

 
 
In this case, the probability density is often better represented as a weighted sum of 
normal densities.   
 

 
    

€ 

p(
! 
X ) = αk

k=1

K

∑ N (
! 
X ; ! µ k ,Σk ) 

 
Such a sum is referred to as a Gaussian Mixture Model (GMM).  A GMM can be 
used to represent density functions from multiple sources.  It can also be used to 
discover a set of subclasses within a global class.  
 
The weights, αk, are the relative frequencies of events from each source  Sk.  

The coefficients αk  to be a probability, we must assure that  

€ 

αk
k=1

K

∑ =1  

In this case, the αk form a probability Distribution.  
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Our problem is to discover the source for each sample, and to estimate the mean and 
covariance   

€ 

( ! µ k ,Σk ) for each source.  We will look at two possible algorithms for this: 
K-Means Clustering, and Expectation Maximization.  In both cases, the algorithm 
will iteratively construct a table, h(k,m) that assigns each sample to one of K clusters 
or sources.   
 
K-Means and EM can be used to discover the classes for each training sample, and 
are thus used for Unsupervised Learning.   They can also be used to estimate a 
multimodal density for a single class.  
  
For K-Means, the assignment of a source to a sample,  h(k,m), is be a hard 
assignment, with h(k, m) = 1 if observation   

€ 

! 
X m  is assigned to cluster  Sk and 0 

otherwise.   
 
When used for unsupervised learning, this can be seen as equivalent to discovering 
the indicator variable   

€ 

! y m    
 

 
  

€ 

h(k,m) =
1 if sample 

! 
X m ∈ Sk

0 Otherwise

# 
$ 
% 

 

 
h(k, m) = 1 if   

€ 

! 
X m  is assigned to cluster k, 0 otherwise.  

 
In the case of EM, this will be a soft assignment, in which h(k,m) represents the 
probability that sample   

€ 

! 
X m  comes from source (or cluster), Sk.  

 
 

€ 

h(k,m) = P(Xm ∈ Sk )  
 
In either case we must initialize the estimated clusters. The better the initial estimate, 
the faster and more reliable the result. In the absence of any initial estimate, we can 

use    

€ 

! 
µ k
1 = k ! µ 0

1
, 

€ 

Σk
1 = I .  However, it is better to use domain knowledge when 

possible.  
 
Both K-means and EM are sensitive to the starting point and can converge to a local 
minimum that is not the best estimate. EM is less sensitive but does not always 
converge to the global best estimate.  
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K-Means Clustering 
 
Assume a set of M sample observations   

€ 

{
! 
X m} , with each observation drawn from one 

of K clusters Sk.  Our problem is to discover an assignment table h(k, m) that assigns 
each observation,   

€ 

! 
X m  in the sample set to the “best” cluster, Sk.  

 

 
  

€ 

h(k,m) =
1 if sample 

! 
X m ∈ Sk

0 Otherwise

# 
$ 
% 

 

 
Given an estimate of the mean,   

€ 

! 
µ k , and covariance 

€ 

Σk  for each cluster, Sk. we can 
use the Mahalanobis Distance to determine the best cluster.  
 
For each cluster we can then refine the estimate of the mean,   

€ 

! 
µ k , and covariance 

€ 

Σk .  
 
This suggests an iterative process composed of two steps:  
 
1) Expectation:    For each sample,   

€ 

! 
X m , determine the most likely cluster Sk. using the 

distance to the current estimate of the mean,   

€ 

! 
µ k , and covariance 

€ 

Σk .  
 
2) Maximization:  For each cluster re-calcuate the mean,   

€ 

! 
µ k , and covariance 

€ 

Σk  using 
sample assignments in h(k,m).  
 

We can initialize the process to any value. For example,   

€ 

! 
µ k
(0) = k ! µ 0 ,   

€ 

Σk
(0) = I    

 
However,  it IS possible for K-means to be stuck in a local minimum, and the closer 
we start to the best values, the faster the process converges. 
 
We will seek to minimize a quality metric:  
For K-Means this is the sum of the Mahalanobis distances. ( 
Distance normalized by Covariance) 
 

  
  

€ 

Q(i) =
m=1

M

∑ h(i) (m,k)
k=1

K

∑ (
! 
X m −

! 
µ k
(i) )T Σk

(i)−1(
! 
X m −

! 
µ k
(i) ) 

 
Initially h(o)(m, k) = 0, i=0.    
We can stop the process after a fixed number of iterations, or when the assignment 
table does not change or when Q(i) does not change.  
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Expectation:   
 
 i←i+1 
 

€ 

∀m =1,M : 
  

€ 

∀k = h(i) (k,m) = 0 
  

  

€ 

k = arg−min
k

(
! 
X m −

! 
µ k )T Σk

−1(
! 
X m −

! 
µ k ){ } 

  

€ 

h(i) (k,m)←1 
 
Maximization 

Mass:    

€ 

Mk = h(i) (k,m)
m=1

M

∑   is the number of samples attributed to source k.  

If Mk≠0:  

Mean:   
  

€ 

µk
(i) =

1
M k

h(i) (k,m) ⋅
! 
X m

m=1

M

∑  

 

Covariance:  
  

€ 

Σk
(i) =

1
M k

h(i) (k,m) ⋅ (
! 
X m −

! 
µ k )(
! 
X m −

! 
µ k )

T

m=1

M

∑  

 
That is, for each component of the covariance, 

€ 

σ ij
(i) :  

 

  

€ 

σ ij
2(i) =

1
Mk

h(i) (k,m) ⋅ (xmi −µki )(xmj −µkj )
m=1

M

∑  

 
At the end of each cycle:  
 

Quality:   
  

€ 

Q(i) =
m=1

M

∑ h(i) (m,k)
k=1

K

∑ (
! 
X m −

! 
µ k
(i) )T Σk

(i)−1(
! 
X m −

! 
µ k
(i) ) 

 
The process stops after a fixed number of cycles, or when the sample assignment 
does not change or the quality metric does not change.  
 
Each source can be interpreted as a separate class or as a mode in a Gaussian Mixture 
model, depending on the application. 
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The Expectation Maximization Algorithm (EM) 
 
As before, assume a set of M sample observations   

€ 

{
! 
X m} , with each observation drawn 

from one of K sources Sk.  Our problem is to discover an assignment table h(k, m) 
that assigns each observation,   

€ 

! 
X m  in the sample set to the “best” cluster, Sk.  For EM 

this will be a probability.   
 
EM iteratively estimates the probability for the assignment of each observation to 
each source.    
 
Expectation Maximization has many uses, including estimating the density functions 
for a Hidden Markov Model (HMM) as well as for estimating the parameters for a 
Gaussian Mixture model.  
 
For a Gaussian Mixture model, a probability density is represented as a weighted sum 
of normal densities.   
 

 
    

€ 

p(
! 
X ) = αk

k=1

K

∑ N (
! 
X ; ! µ k ,Σk ) 

 
It is sometimes convenient to group the parameters for each source into a single 
vector:  
 
   

€ 

! v k = (αk ,
! 
µ k ,Σk )  

 
The complete set of parameters is a vector with K·P coefficients. 
For a feature vector of D dimensions,   

€ 

! 
ν k   has P = 1 + D + D(D+1)/2  coefficients.  

 
To estimate   

€ 

{αk ,
! 
µ k ,Σk}  we need the assignment of samples to source, h(k,m). 

To estimate h(k,m) we need the parameters   

€ 

{αk ,
! 
µ k ,Σk}  

 
This leads to an iterative two-step process in which we alternately estimate  h(k,m).  
and then   

€ 

{αk ,
! 
µ k ,Σk} .  

 
The EM algorithms constructs a table, h(k,m)  
Unlike  K-Means, h(k,m) will contain probabilities. 
 
   

€ 

h(k,m) = P(
! 
X m ∈ Sk )  
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Initialization:  
 Choose K (the number of sources). Use domain knowledge if possible.  
 set i=0.  
 Form an initial estimate for    

€ 

! v (0) = (αk
(0), ! µ k

(0) ,Σk
(0) ) for k = 1 to K.  

 
The closer the initial estimate, the faster the algorithm converges. Domain knowledge 
is useful here.  
 
Expectation step (E) 
 
let  i ← i+1 
 
Calculate the table  

€ 

h(i) (k,m) using the training data and estimated parameters. 
 
   

€ 

h(i) (k,m) = P(
! 
X m ∈ Sk | {Xm},

! 
ν (i−1) )  

 
which gives:  
 

 

    

€ 

h(i) (k,m)← αk
(i−1)N (

! 
X m ,
! 
µ k
(i−1) ,Σk

(i−1) )

α j
(i−1)N (

! 
X m ,
! 
µ j
(i−1) ,Σ j

(i−1) )
j=1

K

∑
 

 
Maximization Step (M) 
 Estimate the parameters   

€ 

! 
ν (i)  using 

€ 

h(i) (k,m) 
 

 Mass:   

€ 

Mk
(i) ← h(i) (k,m)

m=1

N

∑  (Note: Mk is a real) 

 

 Probability:  

€ 

αk
(i) ←

1
M

h(i) (k,m)
m=1

M

∑ =
Mk

(i)

M
  

 

 Mean:  
  

€ 

! 
µ k
(i) ←

1
M k

(i) h(i) (k,m)
m=1

M

∑
! 
X m  

 

 Covariance:  
  

€ 

Σk
(i) ←

1
M k

(i) h(i) (k,m)
m=1

M

∑ (
! 
X m −

! 
µ k
(i) )(
! 
X m −

! 
µ k
(i) )T  



Clustering and non-supervised learning with EM and K-means Lesson 6 

 6-10 

Convergence Criteria 
 
The quality metric is the Log-likelihood of the probability of obtaining the data given 
the parameters.  
 

 
    

€ 

Q(i) = ln{p({
! 
X n} |

! 
ν (i) )} = ln

m=1

M

∑ α j
(i)N (

! 
X m |µ j

(i),Σ j
(i) )

j=1

K

∑
& 
' 
( 

) ( 

* 
+ 
( 

, ( 
 

 
It can be shown that, for EM, the log likelihood will converge to a stable maximum.  
The change in Q will monotonically decrease.  This can be used to define a halting 
condition:   
 
 If   ∆Q = Q(i) – Q(i-1) is less than a threshold, halt.  
 
 


