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http://ufldl.stanford.edu/tutorial/ 
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Notation 
 
xd   A feature.  An observed or measured value.  
  

! 

! 
X    A vector of D  features.   
D   The number of dimensions for the vector    

! 

! 
X  

  

! 

{
! 
X m}  

! 

{ym} Training samples for learning.  
M   The number of training samples.  
N   Spatial extent (size) of the convolutional unit (NxN) 
 

! 

ai, j
k     A “feature map” of k features at each image position P(i,j) 

D(l)    is the number of activation units in layer l.  

! 

ˆ " j =
1
M

aj,m
(2)

m=1

M

#  Sparsity: The average activation of hidden unit j for the training set 

   

! 

KL(" ||
j=1

D (2)

#  ˆ " j ) = " log
"
ˆ " j

+ (1$")log
1$"
1$ ˆ " j

  Kullback-Leibler Divergence 
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Convolutional Neural Networks.  
 
Convolutional Neural Networks take inspiration from the Receptive Field model of 
biological vision systems proposed by Hubel and Weisel in 1968 to explain the 
organization of the visual cortex. By probing the visual cortex of cats with electrodes, 
Hubel and Weisel discovered that the visual cortex was composed of retinal maps of 
visual features. Each retinal map is an image of the pattern projected on the retina 
expressed with correlation of a visual feature at a particular size (scale) and 
orientation. The collection retinal feature maps serves as an intermediate 
representation for recognition.  
 

Fully connected Networks.  
 
A fully connected network is a network where each unit at level l+1 receives 
activations from all units at level l.    
 
If there are D(l) units at level l and D(l+1) units are level l+1 then a fully connected 
network requires learning D(l)·D(l+1) parameters. While this may be tractable for small 
examples, it quickly becomes excessive for practical problems, as found in computer 
vision or speech recognition.  
 
For example, a typical image may have 1024 x 1024 = 220 pixels.   If we assume, say 
a 512 x 512 =218  hidden units we have 238 parameters to learn for a single class of 
image pattern. Clearly this is not practical (and, in any case unnecessary)  
 
A common solution is to perform learning using a limited size window, and to use all 
possible windows as training data.  We have already seen this principle with the use 
of a sliding window approach with the Viola Jones detector.  
 
This leads to a technique where we fix a window size at NxN input units and use all 
possible, overlapping, windows of size NxN from our training data to train the 
network.  
 
We then use the same learned weights with every hidden cell. The resulting operation 
is equivalent to a “convolution” of the learned weights with the input signal.  
 
This approach is reasonable for image and speech signals because both images and 
speech signals have two interesting theoretical properties: They are local and 
stationary.  
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1) Local.  Local means that (most of) the required information can be found within a 
limited sized neighborhood of the signal. In fact, image information tends to be 
multi-scale, but this can be easily accommodated using multi-scale signal techniques  
using a scale invariant pyramid. Such a representation is “local” at multiple scales, 
with low-resolution scales providing context for higher resolution.  This can be 
referred to as “multi-local”.  
 
2) Stationary. A stationary signal is a random (unknown) signal whose joint 
probability density function does not change when shifted in time (speech) or space 
(image).  Image and Speech signals tend to have stationary statistics.  Thus the same 
processing can be applied to every possible (overlapping) window. 
 
There are exceptions to both rules, but these can be handled with established 
techniques.  
 

What Window Size? 
What Window Size  for a feature in a Convolutional Neural Network?   This tends to 
depend on the problem.   It is not uncommon to see tutorials proposal 5 x 5 image 
windows.  This may be fine for illustration, but likely to be far from optimal.  The 
impressive results in category learning were obtained with a 2D image window of 11 
x 11.  
 
A minimum reasonable size is N=7. For smaller windows, the Fourier transform of 
the window function (the digital Sync function) dominates the spectrum and hides 
information.  N=9 is a better choice as the window effects at are negligible.   
 
However, there is the problem of scale invariance. In computer vision, patterns can 
occur at many scales. The solution is to use a scale invariant pyramid, providing 
invariant representation at sampled set of scaled.  The window size should 
accommodate all scale changes between pyramid steps.  This is generally between 
N=11 and N=15.  The actual choice depends on available training data, computing 
time for learning and the scale steps used in the pyramid.  
 
For today, consider that N=11 is a reasonable size.  



CNN, Pooling and Autoencoders  
 

9-5 

Convolutional Neural Network for an image.  
 
Convolutional Neural Network (CNN) can be used as feature detectors for image 
analysis. When used with images, a CNN provides K features at each pixelusing 
convolution with K hidden layers (or kernels). Each feature will be computed as a 
weighted sum of the pixels within an N x N window R(i,j).  
 
Let us assume an image of J rows and I columns, where each pixel has 3 color values. 
Each pixel (i,j) is a color vector,   

! 

! 
P (i, j), represented by 3 integers between 0 and 255 

representing Red, Green and Blue.  
 

 
  

! 

! 
P (i, j) =

R
G
B

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
 

 
In the literature on CNNs, the colors are referred to as “channels”, and the number of 
channels is called the Depth (D)l.  We will refer to the position of receptive field as 
its center. As a result we prefer odd values for N.  
 
The CNN will compute K filters (or kernels) for each window Rij(u,v) of  size NxNx 
D that fits within the image.   If we consider the position of the window as its upper 
left corner, then for each position from i=N/2, j=N/2 to i = I-N/2, j=J–N/2:  
 

  
  
  Rij(u,v) = P(i+u-1, j+v-1)  for  i=N/2, j=N/2 to i = I-N/2, j=J–N/2 
 
The features can be learned as hidden layers using back-propagation, using a training 
set where each window is labeled with a target class.  For example, with the FDDB 
training set, each possible NxN window  Rij(u,v)  would be an training vector   

! 

! 
X m   of 

size D(1)=D·N2. The target value ym would be 1 if the center pixel of the window is in 
the face ellipse and 0 Otherwise.  
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The result is a “feature map” of k features at each position (i,j)  
 
 

! 

ai, j ,k
(2) = f ( wk

(1) (u,v)Ri, j (u,v)
u,v
" +bk

(1) )  

 
Note that written as a convolution, the formula would be  
 
 

! 

ak (i, j) = f ( wk (u,v)R(i "u, j " v)
u,v
# +bk )  

 
Hyperperameters:  
 
CNNs are typically configured with a number of “hyper-parameters”:  
 
Depth: This is the number D of channels for each image pixel.  
 
Stride:  Stride is the step size, S, between window positions.  By default it may be 1, 
but for larger windows, it is possible define larger step sizes.  
 
Spatial Extent:  This is the size, NxN of the receptive field.  
 
Zero-Padding: Size of region at the border of the feature map that is filled with zeros 
in order to preserve the image size (typically N/2).  
 

Pooling 
 
Pooling is a form of non-linear down-sampling that partitions the image into non-
overlapping regions and computes a representative value for each region.  
 
Pooling is typically performed over contiguous regions of the image. In this case, the 
stride equals the pooling window size. The CNN feature image is partitioned into 
small non-overlapping rectangular regions, typically of size 2x2 or 4x4.   
 
Several non-linear functions can be used. These include Max, Average, Median, and 
Histograms.  Max pooling seems to be the most popular.  
 
For example, the SIFT operation, in Computer vision, uses local histograms over a 
4x4 window.  
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AutoEncoders 
 
An autoencoder is an unsupervised learning algorithm  that uses back-propagation to 
learning a sparse set of features for describing the training data.  Rather than try to 
learn a target variable, ym, the auto-encoder tries to learn to reconstruct the input X 
using a minimum set of features.  
 
The effect is similar to the use of Principal components analysis on neighborhoods, 
(as we saw in lecture 4).  However, the auto-encodeur provides a more appropriate 
basis set for recognition, while principle components anaysis is appropriate for 
reconstruction.  

 
 
Using the notation from our 2 layer network, given an input feature vector   

! 

! 
X m  

! 

{wji
(1) ,bj

(1)}  and 

! 

{wkj
(2) ,bk

(2)}such that    

! 

! a m
(3) = ˆ X m "

! 
X m  using as few weights as possible.  

Note that D(3) = D(1).    
 
When the number of hidden units D(2)  is less than the number of input units, D(1),  
 
   

! 

! a m
(3) = ˆ X m "

! 
X m   is necessarily an approximation.  

 
The error for back-propagation for each unit is    

! 

"k,m
(3) = ak ,m

(3) # ai,m
(1) = ak,m

(3) # xi,m  
For each component xi,m of the  training sample   

! 

! 
X m  
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The Sparsity Parameter 
 
The auto-encoder will learn weights subject to a sparseness constraints specified by a 
sparsity parameter 

! 

ˆ " j = " , typically set close to zero.    The sparsity parameter 

! 

"  is the 
average activation for the hidden units.  
 
Using the notation from last week’s lecture,  the auto-encoder is described by:  
 

Level 1:   

  

! 

! 
X m =

x1,m
"

x
D(1) ,m

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

 

level 2:  

! 

aj,m
(2) = f ( wji

(1)xi,m +bj
(1)

i=1

D(1)

" ) 

level 3:  

! 

ak,m
(3) = f ( wkj

(2)aj ,m
(2) +bk

(2)

j=1

D(2)

" )  

 

Desired output  

  

! 

! a m
(3) =

a1
(3)

"
aD

(3)

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

= ˆ X m (
! 
X m ,   with error 

! 

"k,m
(3) = ak ,m

(3) # ai,m
(1) = ak,m

(3) # xi,m  

 
The average activation 

! 

ˆ " j  is computed as the average activation for each of the D(2)
  

hidden units, j=1 to D(2) for the M training samples:  
 

 

! 

ˆ " j =
1
M

aj,m
(2)

m=1

M

#  

 
The auto-encoder can be learned by back-propagation using a minor change to the 
cost function.  
 

 
  

! 

Lsparse(W , B;
! 
X m , ym ) =

1
2

(! a m
(3) "
! 
X m )2 +# KL($ ||

j=1

D (2)

%  ˆ $ j ) 

 

where 

! 

KL(" ||
j=1

s2

#  ˆ " j ) is the Kullback-Leibler Divergence.  

 
and 

! 

"  controls the weight of the sparsity parameter.  
 
(Don’t panic - this is easy to do).  
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Kullback-Leibler Divergence 
 
The KL divergence between the desired and average activation is:  
 

 

! 

KL(" ||
j=1

D (2)

#  ˆ " j ) = " log
"
ˆ " j

+ (1$")log
1$"
1$ ˆ " j

% 

& 
' ' 

( 

) 
* * 

j=1

D (2)

#  

  
 
To incorporate the KL divergence into back propagation, we replace 
 

 

! 

" j
(2) =

#f (zj
(2) )

#zj
(2) wkj

(2)"k
(3)

k=1

D

$  

with  
 

 

! 

" j
(2) =

#f (zj
(2) )

#zj
(2) wkj

(2)"k
(3)

k=1

D(1)

$ +% &
'
ˆ ' j

+
1&'
1& ˆ ' j

( 

) 
* * 

+ 

, 
- - 

( 

) 
* * 

+ 

, 
- -  

 
Note that you need the average activation 

! 

ˆ " j  to compute the correction. Thus you 
need to compute a forward pass on all the training data, before computing the back-
propagation on any of the training samples. This can be a problem if the number of 
training samples is large.  
 
This forces the hidden units to become approximately orthogonal!  
Thus the hidden units act as a form of basis space for the input vectors.  
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Examples of the Hidden Units given by Autoencoders 
 
An example of 100 hidden units learned by a sparse auto-encoder from images:  
 

 

 

 
 
When applied at multiple levels and trained on face images this can give recognizable 
features: 
 

 
 
or when trained on YouTube videos: Cats 
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when trained with car images:  
  

 
 
 
 


