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Using notation and figures from the Stanford Deep learning tutorial at:  
http://ufldl.stanford.edu/tutorial/ 
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Notation 
 
xd   A feature.  An observed or measured value.  
  

! 

! 
X    A vector of D  features.   
D   The number of dimensions for the vector    

! 

! 
X  

  

! 

{
! 
X m}  

! 

{ym} Training samples for learning.  
M   The number of training samples.  

! 

ai
(l )      the activation output of the ith neuron of the lth layer.  

! 

wij
(l )     the  weight for the unit j of layer l and the unit i of layer l+1.  

! 

bi
l      the bias term for ith using of the the l+1th layer 
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Introduction 
 

Artificial Neural Networks  
 
Artificial Neural Networks, also referred to as “Multi-layer Perceptrons”, are 
computational structures composed a weighted sums of “neural” units.  Each neural 
unit is composed of a weighted sum of input units, followed by a non-linear decision 
function.   
 
Note that the term “neural” is misleading. The computational mechanism of a neural 
network is only loosely inspired from neural biology. Neural networks do NOT 
implement the same learning and recognition algorithms as biological systems.  
 
The approach was first proposed by Warren McCullough and Walter Pitts in 1943 as 
a possible universal computational model. During the 1950’s, Frank Rosenblatt 
developed the idea to provide a trainable machine for pattern recognition, called a 
Perceptron. The perceptron is an incremental learning algorithm for linear classifiers 
invented by Frank Rosenblatt in 1956.   The first Perceptron was a room-sized analog 
computer that implemented Rosenblatz learning recognition functions. Both the 
learning algorithm and the resulting recognition algorithm are easily implemented as 
computer programs.  
 
In 1969, Marvin Minsky and Seymour Papert of MIT published a book entitled 
“Perceptrons”, that claimed to document the fundamental limitations of the 
perceptron approach.  Notably, they claimed that a perceptron could not be 
constructed to perform an “exclusive OR”.  
 
In the 1970s, frustrations with the limits of Artificial Intelligence research based on 
Symbolic Logic led a small community of researchers to explore the perceptron 
based approach. In 1973, Steven Grossberg, showed that a two layered perceptron 
could overcome the problems raised by Minsky and Papert, and solve many problems 
that plagued symbolic AI.  In 1975, Paul Werbos developed an algorithm referred to 
as “Back-Propagation” that uses gradient descent to learn the parameters for 
perceptrons from classification errors with training data.  
 
During the 1980’s, Neural Networks went through a period of popularity with 
researchers showing that Networks could be trained to provide simple solutions to 
problems such as recognizing handwritten characters, recognizing spoken words, and 
steering a car on a highway.  However, results were overtaken by more 
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mathematically sound approaches for statistical pattern recognition such as support 
vector machines and boosted learning.  
 
In 1998, Yves LeCun showed that convolutional networks composed from many 
layers could outperform other approaches recognition problems. Unfortunately such 
networks required extremely large amounts of data and computation.  Around 2010, 
with the emergence of cloud computing combined with planetary-scale data 
convolutional networks became practical. Since 2012, Deep Networks have 
outperformed other approaches for recognition tasks common to computer Vision, 
Speech and robotics. A rapidly growing research community currently seeks to 
extend the application beyond recognition to generation of speech and robot actions.  
 

The Artificial Neuron 
 
The simplest possible neural network is composed of a single neuron.  

 
A “neuron” is a computational unit that integrates information from a vector of D 
features,   

! 

! 
X ,  to the likelihood of a hypothesis, hw,b() 

 
   

! 

a = h ! w ,b (
" 
X ) 

 
The neuron is composed of a weighted sum of input values   
 

! 

z = w1x1 +w2x2 + ...+wDxD +b  
 
 followed by a non-linear “activation” function,   

! 

f (z)  (sometimes written 

! 

"(z)) 
 
   

! 

a = h ! w ,b (
" 
X ) = f ( ! w T

" 
X + b) 

Many different activation functions are used.   
A popular choice for hidden layers is the sigmoid (logistic) function: 

! 

f (z) =
1

1" e"z
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This function is useful because  the derivative is:   

! 

df (z)
dz

= f (z)(1" f (z)) 

 
This gives a decision function:   if   

! 

h ! w ,b (
" 
X ) >  0.5 POSITIVE else NEGATIVE 

 
Other popular decision functions include the hyperbolic tangent and the softmax. 
 
 The hyperbolic Tangent:  

! 

f (z) = tanh(z) =
ez " e"z

ez + e"z
 

 
The hyperbolic tangent is a rescaled form of sigmoid ranging over [-1,1] 
 
The  rectified linear function is also popular 
 
 Relu:  

! 

f (z) =max(0, z) 
 
While Relu is discontinuous at z=0, for   z > 0 :  

! 

df (z)
dz

=1 

 
The following plot (from A. Ng) shows the sigmoid, tanh and Relu functions 
 

 
 
Note that the choice of decision function will determine the target variable “y” for 
supervised learning.  
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The Neural Network model 
 
A neural network is a multi-layer assembly of neurons of the form.   
For example, this is a 2-layer network:  
 

 

 
 
The circles labeled +1 are the bias terms.  
The circles on the left are the input terms, also called L1. This is called the input 
layer. Note that many authors do not consider this to count as a “layer” 
The rightmost circle is the output layer (in this case, only one node), also called L3 

The circles in the middle are referred to as a “hidden layer”, L2.  
 
Here we follow the notation used by Andrew Ng.  
 
The parameters carry a superscript, referring to their layer.   
 
For example:   

! 

a1
(2) is the activation output of the first neuron of the second layer.  

  

! 

W13
(2) is the weight for input 1 of activation neuron 3 in the second level.  

 
The above network would be described by:  
 

! 

a1
(2) = f (w11

(1)X1 +w12
(1)X2 +w13

(1)X3 +b1
(1) )  

 

! 

a2
(2) = f (w21

(1)X1 +w22
(1)X2 +w23

(1)X3 +b2
(1) )  

 

! 

a3
(2) = f (w31

(1)X1 +w32
(1)X2 +w33

(1)X3 +b3
(1) )  

   

! 

h ! w ,b (
! 
X ) = a1

(3) = f (w11
(2)a1

(2) + w12
(2)a2

(2) + w13
(2)a3

(2) + b1
(2) ) 

     
This can be generalized to multiple layers.  For example:  
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(taken from the Stanford ufldl tutorial, Ng et al) 

 
Note that we can recognize multiple classes by learning multiple hw,b(x) functions.  
 
In general (following the notation of Ng), this can be described by:  
 
 L1 is the input layer.  
 Ll is the lth

  layer 
 LN is the output layer 

 
 

! 

wij
(l ) denotes the parameter (weight) for the unit j of layer l and the unit i of layer l+1.  

 

! 

bi
l   is the bias term for ith using of the the l+1th layer 

 

! 

ai
(l )  is the activation i in layer l 

 
Note that many authors prefer to define the input layer as l=0. This way the l is the 
number of hidden layers.  
 
In deriving the regression algorithms for learning, we will use  
 

 

! 

zi
(l+1) = wij

(l )ai
(l )

j=1

Nl

" +b(l )   

It will be more convenient to represent this using vectors:  

  

! 

! z (l) =

z1
(l )

z2
(l )

"
zN l

(l )

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

 
As defined, the neural network computes a “forward propagation” of the form 
 
   

! 

! z l+1 =
! w (l) ! a (l) + b(l) 

   

! 

! a (l"1) = f (! z (l+1) ) 
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This is called the “Feed Forward Network”.  
Note that feed forward networks do not contain loops.  
 
The weights for a Neural Network are commonly trained using a technique called 
back-propagation, or “back propagation of errors”.   
 
Back propagation is a form of regression analysis. The most common approach is to 
employ a form of Gradient Descent.  
 
Gradient descent calculates a loss function for the weights of the network and then 
iteratively seeks to minimize this loss function.  This is commonly performed as a 
form of supervised learning using labeled training data.  
 
Note that Gradient descent requires that the activation function be differentiable.  
 

Network Structures for Simple Feed-Forward Networks 
 
The architecture of a neural network refers to the number of layers, the number of 
neurons of each layer and the kind of neurons, and the kinds of neural computation 
performed.  
 
For a simple feed forward network:  
 
The number of input neurons is determined by the number of input values for each 
observation (size of the feature vector, D) 
 
The number of output neurons is the number of classes to be recognized.  
 
The number of hidden layers is determined by the complexity of the recognition and 
the amount of training data available.  
 
If your training data is linearly separable (if there exists a hyper-plane between the 
two classes) then you do not even need a hidden layer.  Use a simple linear classifiers 
for example defined by a Support Vector machine or Linear Discriminant Analysis.  
 
A single hidden layer is often sufficient for many problems (although more reliable 
solutions can be found using Support vector machines or other techniques).  
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The number of neurons in a hidden layer depends on the complexity of the problem, 
and the amount of training data available.  
 
In theory, any problem can be solved with a single hidden layer, given enough 
training data. In practice the quantity of training data is not practical.  
 
Experience shows that some very difficult problems can be solved using less training 
data by adding additional layers.  
 
However, the spectacular progress of the last few years has been obtained by the 
introduction of new computational models such as “Convolutional Neural Networks”, 
“Pooling”, Auto-encoders and Long Term-Short Term Memory.  Many of these are 
actually known pattern recognition techniques recycled into a Neural Network 
framework.  
 
But before we get to more advanced techniques, we need to look at the basics.  
 
 
Regression Analysis 
 
The parameters for a feed forward network are commonly learned using regression 
analysis of labeled training data.  
 
Regression is the estimation of the parameters for a function that maps a set of  
independent variables into a dependent variable.  
 
   

! 

ˆ y = f (
! 
X , " w ) 

 
Where  
   

! 

! 
X  is a vector of D independent (unknown) variables.  

 

! 

ˆ y  is an estimate for a variable 

! 

y  that depends on   

! 

! 
X .  

 and  
 

! 

f () is a function  that maps   

! 

! 
X  onto 

! 

ˆ y   
   

! 

! w  is a vector of parameters for the model.  
 
Note:   
 For 

! 

ˆ y , the “hat” indicates an estimated value for the target value 

! 

y  
   

! 

! 
X  is upper case because it is a random (unknown) vector.  
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Regression analysis refers to a family of techniques for modeling and analyzing the 
mapping one or more independent variables from a dependent variable.  
 
For example, consider the following table of age, height and weight for 10 females:  
 
M AGE H (M) W (kg) 
1 17 163 52 
2 32 169 68 
3 25 158 49 
4 55 158 73 
5 12 161 71 
6 41 172 99 
7 32 156 50 
8 56 161 82 
9 22 154 56 

10 16 145 46 
 
We can use any two variables to estimate the third.   
We can use regression to estimate the parameters for a function to predict any feature 

! 

ˆ y  from the two other features   

! 

! 
X .  

 
For example we can predict weight  from height  and age as a function.    

   

! 

ˆ y = f (
! 
X , " w )  where   

! 

ˆ y = Weight ,  
  

! 

! 
X =

Age
Height
" 

# 
$ 

% 

& 
'  and   

! 

! w  are the model parameters 

Linear Models 
 
A linear model has the form  
 
   

! 

ˆ y = f (
! 
X , " w ) = " w T

! 
X + b = w1x1 + w2x2 + ...+ wDxD + b 

 

The vector 

  

! 

! w =

w1

w2

"
wD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 are the “parameters” of the model that relates    

! 

! 
X  to 

! 

ˆ y .  

The equation   

! 

! w T
" 
X + b = 0 is a hyper-plane in a D-dimensional space,  

  

! 

! w =

w1

w2

"
wD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

  is the normal to the hyperplane and b is a constant term.  
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It is generally convenient to include the constant as part of the parameter vector and 
to add an extra constant term to the observed feature vector.  
This gives a linear model with D+1 parameters where the vectors are:   
 

 

  

! 

! 
X =

1
x1
"

xD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

  and  

  

! 

! w =

w0

w1

"
wD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

  where 

! 

w0  represents b.  

 
This gives the "homogeneous equation" for the model:  
 
   

! 

ˆ y = f (
! 
X , " w ) =

" w T
" 
X  

 
Homogeneous coordinates provide a unified notation for geometric operations.  
 
With this notation, we  can predict weight from height and age using a function 
learned from regression analysis.  

   

! 

ˆ y = f (
! 
X , " w )  where   

! 

ˆ y = Weight ,  
  

! 

! 
X =

1
Age

Height

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
 and 

  

! 

! 
W  =

w0

w1

w2

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
  are the model 

parameters, and the surface is a plane in the space (weight, age, height).  
In a D dimensional space, linear homogeneous equation is a hyper-plane.  
The perpendicular distance of an arbitrary point from the plane is computed as  
 
 d = w0+w1x1+w2x2 
 
This can be used as an error.  
 

Estimation of a hyperplane with supervised learning   
 
In supervised learning, we learn the parameters of a model from a labeled set of 
training data. The training data is composed of M sets of independent variables,   

! 

{
! 
X m}  

for which we know the value of the dependent variable 

! 

{ym}.  
The training data is the set   

! 

{
! 
X m} , 

! 

{ym} 
 
For a linear model, learning the parameters of the model from a training set is 
equivalent to estimating the parameters of a hyperplane using least squares.  
 
In the case of a linear model, there are many ways to estimate the parameters:  
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For example, matrix algebra provides a direct, closed form solution.  
 
Assume a training set of M observations  

! 

{
! 
X m}

! 

{ym} where the constant d is included as 
a "0th" term in   

! 

! 
X  and   

! 

! w .  
 

 

  

! 

! 
X =

1
x1
"

xD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 and  

  

! 

! w =

w0

w1

"
wD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

 
We seek the parameters for a linear model:      

! 

ˆ y = f (
! 
X , " w ) =

" w T
" 
X  

This can be determined by minimizing a "Loss" function that can be defined as the 
Square of the error.  
 

 
  

! 

L( ! w ) = ( ! w T
! 
X m "

m=1

M

# ym )
2  

 
To build or function, we will use the M training samples to compose a matrix X and a 
vector Y.  
  

  

! 

X =

1 1 ! 1
x11 x12 ! x1M
x21 x22 ! x2M
! ! " #
xD1 xD2 ! xDM

" 

# 

$ 
$ 
$ 
$ 
$ $ 

% 

& 

' 
' 
' 
' 
' ' 

  (D+1 rows by M columns)  

  

! 

Y =

y1
y2
!
yM

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

   (M rows).  

 
We can factor the loss function to obtain:    

! 

L( ! w ) = ( ! w T X "Y )T ( ! w T X "Y ) 
 
To minimize the loss function, we calculate the derivative and solve for   

! 

! w  when the 
derivative is 0.  
  

 
  

! 

"L( ! w )
"
! w 

= 2XTY # 2XT X ! w = 0  

 
which gives   

! 

XTY = 2XT X ! w     and thus     

! 

! w = (XT X)"1XTY  
 
While this is an elegant solution for linear regression, it does not generalize to other 
models.  A more general approach is to use Gradient Descent.  
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Gradient Descent 
 
Gradient descent is a popular algorithm for estimating parameters for a large variety 
of models.  Here we will illustrate the approach with estimation of parameters for a 
linear model.  
 
As before we seek to estimate that parameters   

! 

! w  for a model 
  
   

! 

ˆ y = f (
! 
X , " w ) =

" w T
" 
X  

 
from a training set of M samples  

! 

{
! 
X m}

! 

{ym} 
 

We will define our loss function as 

! 

1
2

 average error 
  

! 

L( ! w ) =
1
2M

( f (
" 
X m ,
! w )

m=1

M

" # ym )
2  

 
where we have included the term  

! 

1
2

 to simplify the algebra later.  

 
The gradient is the derivative of the loss function with respect to each term 

! 

wd  of   

! 

! w  is  
 

 

  

! 

! 
" f (
" 
X , ! w ) =

#f (
" 
X , ! w )
#
! w 

=

#f (
" 
X ,w0 )
#w0

#f (
" 
X ,w1)
#w1
#

#f (
" 
X ,wD )
#wD

$ 

% 

& 
& 
& 
& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
) 
) 
) 

 

where:  

 
  

! 

"f (
! 
X ,wd )
"wd

=
1
M

( f (
! 
X m ,
" w )# ym )xdm

m=1

M

$  

 
 

! 

xdm  is the dth  coefficient of the mth training vector. Of course 

! 

x0m =1 is the constant 
term.  
 
We use the gradient to “correct” an estimate of the parameter vector for each training 
sample. The correction is weighted by a learning rate “α” 
 

We can see  
  

! 

1
M

( f (
! 
X m ,
" w (i"1) )" ym )xdm

m=1

M

#  as the “average error” for parameter 

! 

wd
(i"1)  

Gradient descent corrects by subtracting the average error weighted by the learning 
rate. 
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Gradient Descent Algorithm 
 
Initialization:  (i=0)  Let  

! 

wd
(o) = 0   for all D coefficients of   

! 

! w  
 
Repeat until   

! 

L( ! w (i) )" L( ! w (i"1) ) <  #    :   

! 

! w (i) =
! w (i"1) "#

! 
$ f (
" 
X , ! w (i"1) ) 

 

where 
  

! 

L( ! w ) =
1
2M

( f (
" 
X m ,
! w )

m=1

M

" – ym )
2 

 

That is:   
  

! 

wd
(i) = wd

(i"1) "#
1
M

( f (
! 
X m ,
" w (i"1) )" ym )xdm

m=1

M

$  

Note that all coefficients are updated in parallel.  
The algorithm halts when the change in   

! 

"L( ! w (i) ) becomes small:  
 
   

! 

L( ! w (i) )" L( ! w (i"1) ) <  #  
 
For some small constant 

! 

" .  
 
Gradient Descent can be used to learn the parameters for a non-linear model.  
For example, when D=2, a second order model would be:  
 

 

  

! 

! 
X =

1
x1
x1
2

x2
x1
2

x1x2

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 
' 

  and    

! 

f (
! 
X , " w ) = w0 +w1x1 + w2x1

2 + w3x2 + w4x2
2 + w5x1x2  

 
 

Practical Considerations for Gradient Descent 
 
The following are some practical issues concerning gradient descent.  
 
Feature Scaling 
 
Make sure that features have similar scales (range of values).  One way to assure this 
is to normalize the training date so that each feature has a range of 1.  
 
Simple technique:  divide by the range of sample values.  
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For a training set   

! 

{
! 
X m}  of M training samples with D values.  

 
Range:  rD = Max(xd) - Min(xd) 
 
Then  

 

! 

"m=1
M : xdm :=

xdm
rd

 

 
Even better would be to scale with the mean and standard deviation of the each 
feature in the training data  
 
 

! 

µd = E{xdm}   

! 

" 2 = E{(xdm #µd )
2}  

 
 

! 

"m=1
M : xdm :=

(xdm #µd )
$ d

 

 

   
 
Note that the value of the loss function should always decrease:  
 
Verify that   

! 

L( ! w (i) )" L( ! w (i"1) ) < 0 .   
 
if    

! 

L( ! w (i) )" L( ! w (i"1) ) > 0   then decrease the learning rate “α” 
 
You can use this to dynamically adjust the learning rate α.  
For example, one can start with a high learning rate. Any time that   

! 

L( ! w (i) )" L( ! w (i"1) ) > 0  
1)  reset  a ← a/2 
2) Recalculate the ith iteration.  
 
Halt when a < threshold.  
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Regression for a Sigmoid Activation Function  
 
Gradient descent is easily used to estimate a sigmoid estimation function.  
 
Recall that the sigmoid function has the form  

  

! 

h(
! 
X , ! w ) =

1
1+ e"g(

! 
X , ! w )   

This function is differentiable.  
 

 
 
 
 When   

! 

gk (
! 
X , ! w ) =

! w T
! 
X  

  

! 

h(
! 
X , ! w ) =

1
1+ e"

! w T
! 
X  

 
and the decision rule is:   if   

! 

h(
! 
X , ! w ) >  0.5  then Positive else  Negative 

 
The cost function for this activation function is:  
 
 

 
  

! 

Cost(h(
! 
X , ! w ), y) =

– log(h(
! 
X , ! w ))   if y =1

" log(1– h(
! 
X , ! w )       if y = –1        

# 
$ 
% 

 

 
Thus the loss function would be:  
 

 
  

! 

L( ! w ) =
1
m

Cost(h(
! 
X m ,
! w ), ym )

m=1

M

"  

 

 
  

! 

L( ! w ) =
1
m

ym log(h(
! 
X m ,
! w )+ (1" ym )

m=1

M

# log(1" h(
! 
X m ,
! w ) 

 

 
  

! 

"h(
! 
X ,wd )
"wd

=
1
M

(ym # h(
! 
X m ,
" w ))xdm

m=1

M

$  
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Gradient Descent 
 
 Repeat until   

! 

L( ! w (i) )" L( ! w (i"1) ) <  #    :   

! 

! w (i) =
! w (i"1) "#

! 
$ h(
" 
X , ! w (i"1) )  

 

where 
  

! 

L( ! w ) =
1
m

ym log(h(
! 
X m ,
! w )+ (1" ym )

m=1

M

# log(1" h(
! 
X m ,
! w ) 

 

 
  

! 

wd
(i) = wd

(i"1) "#
1
M

(ym " h(
! 
X m ,
" w (i"1) ))xdm

m=1

M

$  

 

Regularisation 
 
Overfitting: Tuning the function to the training data.  
Overfitting is a common problem with machine learning, particularly when there are 
many features and not enough training data. One solution is to “regularise” the 
function by adding an additional term.  
 
replace 

 
  

! 

w0
(i) = w0

(i"1) "#
1
M

(ym " h(
! 
X m ,
" w (i"1) ))x0m

m=1

M

$  

with  

 
  

! 

wd
(i) = wd

(i"1) "#
1
M

(ym " h(
! 
X m ,
" w (i"1) ))xdm

m=1

M

$ +
%
m

wd
(i"1)  

 


