
Intelligent Systems: Reasoning and Recognition

James L. Crowley

ENSIMAG 2 / MoSIG M1 Second Semester 2016/2017

Lesson 15 31 March 2017

CLIPS: RULE Syntax, Actions, The RETE Algorithm

Production System Architecture ..2
Bind, Read and Read-Line.. 2
Deffunctions ... 3

The RETE Algorithm ..5
The RETE decision network... 5
Junction Elements: Unification of facts. 7

The Agenda ...9
Examples of Strategies ... 11
Salience .. 12
Contexts and Control Elements... 12
Declarative Control Structures.. 16

Rule Based programming with CLIPS Lesson 15

15-2

 Production System Architecture

Interface
Utilisateur

Mémoire de Travail
("Facts List")

MATCH
(Rete) Agenda

SélectionExécution

Rules

The system implements an "inference engine" that operates as a 3 phase cycle:

The cycle is called the "recognize act" cycle.
The phases are:
 MATCH: match facts in Short Term memory to rules
 SELECT: Select the correspondence of facts and rules to execute
 EXECUTE: Execute the action par of the rule.

Bind, Read and Read-Line
New variables can be defined and assigned with bind: (bind ?x 0).
If the variable has not previously been defined, it is automatically created.
The scope (domaine of definition) of the variable is the current rule or objects.

Values may be read from a file or from ttyin by read and readline.
Read will read a single symbol.
Read-line reads all characters to the next carriage return and returns a string.

example :
(defrule ask-user
 (person)
=>
 (printout t "first name? ")
 (bind ?surname (read))
 (printout t "Family name? ")
 (assert (person ?surname (read)))
 (printout t "Why are you creating this person? ")
 (bind ?string (readline))
)
Both Read and Readline are functions. They must be preceded and terminated by “(“
and “)”.

Rule Based programming with CLIPS Lesson 15

15-3

Deffunctions

The user may define his own functions with defunction.
A user defined function returns a value. This may be a string, symbol, number or any
primitive.

Syntax:
(deffunction <name> [<comment>]
 (<regular-parameter>* [<wildcard-parameter>])
 <action>*)

<regular-parameter> ::= <single-field-variable>
<wildcard-parameter> ::= <multifield-variable>

examples :

(deffunction my-function (?x)
 (printout t "The argument is " ?x crlf)
)

(my-function fou)

(deffunction test (?a ?b)
 (+ ?a ?b) (* ?a ?b))
(test 3 2)

(deffunction distance (?x1 ?y1 ?x2 ?y2)
 (bind ?dx (- ?x1 ?x2))
 (bind ?dy (- ?y1 ?y2))
 (sqrt (+ (* ?dx ?dx) (* ?dy ?dy)))
)

In the action part (or RHS) the rule contains a sequence of actions.
Any command recognized by the interpreter can be placed in the action part of a rule.
Each action enclosed in parentheses (<fonction> <<args>>*)
The first symbol in parentheses is interpreted as a function.

example :

(deffunction distance (?x1 ?y1 ?x2 ?y2)
 (bind ?dx (- ?x1 ?x2))
 (bind ?dy (- ?y1 ?y2))
 (sqrt (+ (* ?dx ?dx) (* ?dy ?dy)))
)

Rule Based programming with CLIPS Lesson 15

15-4

(defrule calculate-distance
 (point ?x1 ?y1)
 (point ?x2 ?y2)
=>
(assert
 (distance (distance ?x1 ?y1 ?x2 ?y2)))
)

Rule Based programming with CLIPS Lesson 15

15-5

The RETE Algorithm

In a production system, in principle, each condition of each rule requires a complete
scan of the working memory (facts list) during each cycle of execution. This can be
very costly.

The RETE algorithm avoids this by providing incremental matching between facts
and the LHS of rules.

∆ MT ∆ Agenda

Régles

Rete
Match

RETE is an incremental matching algorithm. The word RETE is Latin for "network".
RETE operates by compiling the rules into a decision network.
The inputs to the algorithm are changes to working memory.
The outputs are changes to the agenda.

The working memory can only be changed by the commands assert, retract, modify
or reset. Modify can be implemented as retract then assert. Reset clears all facts.

Changes in working memory filter through this decision network generate changes to
the agenda.

The RETE decision network

The condition (LHS) part of a rule is composed of a list of Condition Elements (CEs)

 (defrule nom
 (CE-1)
 (CE-2)
 =>
 (actions)
)

Rule Based programming with CLIPS Lesson 15

15-6

Each CE can be considered as a form of filter for a certain type of facts.
The type is the type defined by the template, or the first symbol of the fact.

Groups of CEs for the same type are grouped into a sub-network.

!MT

•
•
•

Régle

Régle

•
•
•

∆ Agenda

Condition

Condition

Condition

 The network dispatches each change in working memory (facts) to the filter group
for the "type" of the fact.

For example, consider :

 (deftemplate person
 (slot family-name)
 (slot first-name)
)

(defrule Same-name
 ?P1 <- (person (family-name ?f)(first-name ?n1))
 ?P2 <- (person (family-name ?f)(first-name ?n2&~?n1))

=>
 (printout t ?n1 " " ?f" and " ?n2 " " ?f " have the
same family name" crlf)
)

Rule Based programming with CLIPS Lesson 15

15-7

For each rule, there is a filter branch for each CE. The filter branches meet at a
Junction element.

Junction Elements: Unification of facts.

Junction elements have two roles:

1) to maintain the list of all fact indexes for all facts that satisfies each CE of the rule.
2) to match variables between CE's to produce lists of facts for which a variable is
assigned the same value.

Each input to the junction maintains a list of facts that satisfied the CE.
Each time a list is changed, any variable assignments are compared to the variable
assignments for all other CEs of the rule.

A list of indexes for matching facts is produced.

Example:

(deftemplate person (slot name) (slot father) (slot gender)

(defrule example
 (person (name ?father))
 (person (father ?father) (name ?child)
=>
 (printout ?father" is the father of " ?child crlf)
)

CEs can be negative. Consider :

(defrule example
 (person (name ?n))
 (not (person (father ?n)))
 =>
 (printout t "?n" has not children " crlf)
)

Rule Based programming with CLIPS Lesson 15

15-8

Efficient programming with RETE

The order of CE's in a rule can affect the efficiency of a rule base.
This is because the Join evaluates CE's in the order that they are declared.
Advice for more efficient code:

1) Place specific tests before more general tests. The more variables and wildcards in
a CE, the lower it should go. Comparing variable bindings is expensive.
2) CEs that are least likely to match should be given first.
3) Volatile patterns (CEs that concern facts that are frequently modified, asserted or
retracted, should be listed last.
4) Multifield and $? variables should be used carefully. They are more expensive
because the bind zero or more fields.
5) Many short simple rules are better than a few complex rules.

Algorithmic Complexity of RETE:

Given: P: Number of rules
 C: Average number of CEs in a rule
 W: Number of facts

 The algorithmic complexity of the recognize act cycle is:

 Best case: O(Log(P))
 Average Case O(PW)
 Worst Case: O(PWc)

 The worst case happens when there are many variables to match.
For simple rule bases with few variable matches, computation and memory grow
slightly faster than linear.

Programs with thousands of rules and tens of thousands of facts are practical.

Rule Based programming with CLIPS Lesson 15

15-9

The Agenda

The agenda is a list of activations of rules. It provides the rule name, index of the
fact that matches each CE, and variable bindings. There are a number of different
control regimes.

Control regimes following different principles.
A fundamental principle is "Refraction" .

Refraction: A unique activation is only executed once.
 Activation is removed from the agenda on execution.

By default, the agenda acts as a stack (LIFO).
Other general principles include:

recency: Recent activations are given priority
MEA: A variation of recency where the index of the fact matching the FIRST CE
determines the priority of the activation.
specificity: Rules with more CEs are given priority.

For example:

(defrule example
 (item ?x ?y ?x)
 (test (and (numberp ?x) (> ?x (+ 10 ?y)) (< ?x 100)))
 =>)

has specificity 2

OPS 5 provided 2 control regimes: LEX and MEA.
CLIPS has 7.

1) "Depth Strategy" - Agenda acts as a list of stacks (LIFO).
 There is a separate stack for each salience.

2) "Breadth Strategy" - Agenda acts as a list queue (FIFO) with a separate stack for
each salience

Rule Based programming with CLIPS Lesson 15

15-10

3) LEX strategy (Lexographic). (Compatibility with OPS). The agenda is a list of
sorted activations. Activations for each saliency are sorted by Recency and then by
specificity.

4) MEA strategy (Means-Ends-Analysis). (Compatibility with OPS). Activations for
each saliency are sorted based on Fact-Index of the FIRST CE, then by specificity.

5) Complexity Strategy: Rules are sorted by Specificity with most complex rules
given priority.

6) Simplicity: Rules are sorted by specificity with simplest rules given priority.

7) Random: using a random seed determined at start of execution.

Depth strategy is recommended (Agenda acts as a stack).

Rule Based programming with CLIPS Lesson 15

15-11

Examples of Strategies

 (set-strategy depth)
 (get-strategy)

(defrule rule-A
 ?f <- (a)
=>
 (printout t "Rule A fires with " ?f crlf)
)

(defrule rule-B
 ?f <- (b)
=>
 (printout t "Rule B fires with " ?f crlf)
)

(defrule rule-A-and-B
 ?f1 <- (a)
 ?f2 <- (b)
=>
 (printout t "Rule B fires with A =" ?f1 " and B = " ?f2 crlf)
)

(assert (a))
(assert (a))
(assert (b))

(set-strategy depth)
(set-strategy breadth)
(set-strategy lex)
(set-strategy mea)
(set-strategy complexity)
(set-strategy simplicity)
(set-strategy random)
(set-strategy depth)

Rule Based programming with CLIPS Lesson 15

15-12

Salience

The salience property for a rule determines its priority.
Salient rules are given higher priority in the agenda.

Salience is "declared" in the [<declaration>] part of the LHS, before the CE's

(defrule <rule-name> [<comment>]
 [<declaration>] ; Rule Properties
 <conditional-element>* ; Left-Hand Side (LHS)
=>
 <action>*) ; Right-Hand Side (RHS)

(declare (salience S)) where -10 000 < S < 10 000
by default S is 0.

example:

(defrule example
 (declare (salience 999))
 (initial-fact)
 =>
 (printout "I am an important rule! Salience= 999" crlf)
)

There is a tendency for beginners to abuse salience in order to force the order of rule
execution. Don't! Rules should be structured with contexts.
If the system is well constructed, rule execution order is not important and only a
few saliencies are needed.

A well-constructed program should need only 3 or 4 salience. At most 7 may be
needed.

Contexts and Control Elements

Contexts are indicated by the existence of a token: an element in the facts list that
indicates the current context.

 (context <Name of the context>)

Rule Based programming with CLIPS Lesson 15

15-13

A classic example is a self-monitoring and self-repair system used for satellites and
space applications. Such systems typically operate in cycle with 3 contexts:

Fault-Detection: A set of rules that test the integrity of subsystems
Fault-Diagnosis: A set of rules that determine the origin of an error.
Fault-Repair: A set of rules that reconfigure the system to repair a fault.

One can imagine many ways to code control.
For example,

1) It is possible to code the fault condition in each rule. However this is expensive
and can allow multiple interacting faults to interfere with each other.

2) Use a “context” element to mark each context and then use a rule to manage the
transitions. This is the preferred solution.

The transition rules encode the control of the system. These can be reactive or
declarative. For example:

(defrule detection-to-diagnosis
 ?context <- (context detection)
 (fault ?f detected)
=>
 (retract ?context)
 (assert (context diagnosis))
 (printout t "Fault " ?f " detected!" crlf)
)

(defrule diagnosis-to-repair
 ?context <- (context diagnosis)
 (fault ?f detected)
 (fault ?f diagnosis ?d)
=>
 (retract ?context)
 (assert (context repair))
 (printout t " Fault " ?f " diagnosis " ?d crlf)
)

Rule Based programming with CLIPS Lesson 15

15-14

(defrule repair-to-detection
 ?c <- (context repair)
 (fault ?f diagnosis ?d repair ?r)
=>
 (retract ?c)
 (assert (context detection))
 (printout t "Fault repaired" crlf)
)

Each context contains a collection of rules for domain knowledge that diagnosis and
suggest a repair for the fault. We can use a salience hierarchy to assure execution of
domain knowledge

Salience Hierarchy:
 Level Salience
 Constraints 30 ;; Rules that eliminate hypotheses
 Expertise 20 ;; Domain knowledge
 Query 10 ;; Rules that interrogate the user
 Control 0 ;; Context transitions

(defrule find-fault
 (declare (salience 20))
 (context identification)
=>
 (printout t "So, what broke this time? ")
 (assert (fault id (read)))
)

;; function to set a component on or off

(deffunction set (?a ?b) (printout t ?a " is set to " ?b
crlf))

(set motor off)

;;;
;;; repair knowledge in facts
;;;;

(defacts repair-knowledge
 (replace motor1 motor2)

Rule Based programming with CLIPS Lesson 15

15-15

 (replace sensor-1 sensor2)
)

(defrule repair-fault
 (declare (salience 20))
 (context repair)
 (fault identified ?p)
 (replace ?p ?replacement)
=>
 (set ?p off) ;; function defined by user.
 (set ?replacement on)
 (assert (fault repaired))
)

Rule Based programming with CLIPS Lesson 15

15-16

Declarative Control Structures

An alternative to coding the context transitions in explicit rules, is to encode the
context transitions in a declarative data structure and use a single generic transition
rule.

(deffacts control-list
 (context detection)
 (next-context detection diagnosis)
 (next-context diagnosis repair)
 (next-context repair detection)
)

(defrule context transition rule.
 (declare (salience -10))
 ?P <- (context ?context)
 (next-context ?context ?next)
=>
 (retract ?P)
 (assert (context ?next))
)

This is an example of a DECLARATIVE representation of control knowledge.
Declarative structures make it possible to treat knowledge representations as data for
calculation. A declarative representation can be used as data to reason about
knowledge.

Rule Based programming with CLIPS Lesson 15

15-17

Salience Hierarchy:

Different styles of programs can require different hierarchies of salience.
A good practice is to declare the hierarchy in advance, using multiples of 100.
An example is the following:

 Level Salience
 Constraints 300 ;; Rules that eliminate hypotheses
 Expertise 200 ;; Domain knowledge
 Query 100 ;; Rules that interrogate the user
 Control 0 ;; Context transitions

