Computer Vision

M2R MoSIG option GVR
 James L. Crowley
 Lesson 6
 Fall Semester
 19 Nov 2015
 Exercises

For an image $P(i, j)$, the gradient $\vec{\nabla} P(i, j)$ is a vector composed of the first derivatives in the row and column directions. In the following questions, assume that $P(i, j)$ is a luminance (black and white) image of size 1024×1024 pixels with 8 bits per pixel.

1) You are asked to compute the gradient $\vec{\nabla} P(i, j)$ using convolution with sampled Gaussian derivatives, $\vec{\nabla} G(i, j)$. Give the formulae for the sampled Gaussian derivatives as well as the formulae for the 2D convolution.
2) What is the minimum size support window that can be used for a Gaussian derivative with $\sigma=2$? What is the computational cost for such a convolution in terms of additions and multiplications when implemented as a 2-D convolution?
3) Show that the sampled Gaussian derivatives are separable. That is, that convolution with the sampled Gaussian derivative can be implemented as a sequence of convolutions with 1-D filters in the row and column directions. What is the computational cost in terms of additions and multiplications for the convolution of the image with sampled Gaussian derivatives at $\sigma=2$ when implemented as convolution with separable 1D components?
4) Show that a 1D Gaussian low pass filter with $\sigma=2$ can be implemented as a series of convolutions with 1D Gaussian low pass filter with $\sigma=1$. How many convolutions are needed to compute a 1D Gaussian low pass filter with $\sigma=2$ as a series of convolutions with a 1D Gaussian low pass filter with $\sigma=1$? What is the computational cost of this series of convolutions?
5) Is it possible to implement the convolution with a 1-D Gaussian Derivative filter with $\sigma=2$ as a series of convolutions with 1-D Gaussian filters? If yes, how? If no, why not?
6) Given the Gradient of the image $\vec{\nabla} P(i, j)$ in the row and column directions, give a formulae to determine the gradient at pixel (i, j) in an arbitrary direction θ.
7) Given the Gradient of the image $\vec{\nabla} P(i, j)$, give the formulae to determine the direction of maximum gradient, $\theta_{\max }(\mathrm{i}, \mathrm{j})$ at each pixel i, j.
8) Give a formula for the coefficients for a binomial low pass filter at $\sigma=2$.
9) Show that a binomial low pass filter at $\sigma=2$ can be implemented as a series of convolutions with the binomial filter [llll 121 . How many such convolutions are required?
10) Assume that you use $\left[\begin{array}{lll}1 & 0 & -1\end{array}\right]$ as a first derivative operator. What is the computational cost (additions and multiplications) for computing the Gradient of an image at $\sigma=2$ using a series of convolutions with 1-D binomial filters [12 1] in the row and column directions?
