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Recognition and Reasoning  
 
Classification 
In pattern recognition our problem is to build a box that maps an observation,   

! 

! 
X  into 

an estimate 

! 

ˆ C k  of the class Ck from a set of K possible classes.  
 

 
 
Where 

! 

ˆ " k  is a statement that asserts that   

! 

! 
X is a member of class 

! 

ˆ C k , one of the K 
possible classes. 

! 

ˆ C k " Ck{ } 
 
With a generative approach to classification, we will design our box to minimize the 
number of mistakes we will look for the most likely class, 

! 

ˆ C k " Ck{ } 
 

 
  

! 

ˆ " k = arg#max
" k

P("k |
! 
X ){ }  

Our primary tool for this will be Baye's Rule :   
  

! 

P("k |
! 
X ) =

P(
! 
X |"k )P("k )

P(
! 
X )

 

 
To apply Baye’s rule, we require a representation for the probabilities   

! 

P(
! 
X |"k ),   

! 

P(
! 
X ), 

and 

! 

P("k ) . 
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Plausible Reasoning  
 
Plausible reasoning provides a tool to explain the world and predict the future by 
reasoning over uncertain hypotheses given evidence.  
 
"Plausibility" represents the degree to which a statement can be believed.  This can be 
represented by likelihood or probability.  
 
Plausible reasoning seeks to validate or invalidate hypotheses using uncertain or 
unreliable information. Plausible reasoning can be used to reason about the truth of 
single hypothesis (H or ¬H) or choose from a number of competing hypotheses {Hi}.  
 
Bayes Rule gives us a technique for using evidence to support hypotheses. 
Let H be a hypothesis and let E be evidence for the hypotheses.  
 
Then Bayes rule tells us 
 
 P(H, E) = P(H | E ) P(E ) = P(E | H) P(H ) 
 
so that   

! 

P(H | E) =
P(E | H )P(H )

P(E)
 

 
We will apply this technique recursively, as new data arrives and use this to reason 
over multiple hypotheses  
 
In today's lecture we will review the definitions for Bayes Rule and for Probability 
that provide the foundation for Bayesian recognition and reasoning.  
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Bayes Rule and Conditional Probability 
 
Baye's rule provides a unifying framework for pattern recognition and for reasoning 
about hypotheses under uncertainty. An important property is that this approach 
provides a framework for machine learning.   
 
"Bayesian" refers to the 18th century mathematician and theologian Thomas Bayes 
(1702–1761), who provided the first mathematical treatment of a non-trivial problem 
of Bayesian inference.  Bayesian inference was made popular by Simon Laplace in 
the early 19th century.  
 
The rules of Bayesian inference can be interpreted as an extension of logic. Many 
modern machine learning methods are based on Bayesian principles.   
 

Baye's Rule 
 
Bayes Rule gives us a tool to reason with conditional probabilities.  
 
Conditional probability is the probability of an event given that another event has 
occurred. Conditional probability measures "correlation" or "association".  
Conditional probability does not measure causality.   
 
Consider two independent classes of events A and B such that A ∩ B ≠ ∅ 
Let P(A) be the probability that an event E ∈ A 
Let P(B) be the probability that an event E ∈ B and  
Let P(A, B)  be the probability that the event is in both A and B.  
 
We can note that P(A, B) = P((E ∈ A) ∧(E ∈ B)) = P(E ∈ A∩B)  
 
Conditional probability can be defined as 
 
 

! 

P(A | B) =
P(A,B)
P(B)

=
P(A" B)
P(B)

 

 
Equivalently, conditional probability can be defined as 
 
 

! 

P(A | B)P(B) = P(A,B) 
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However, because set union is commutative:  
 
 

! 

P(A | B)P(B) = P(A,B) = P(B,A) = P(B | A)P(A) 
 
The relation 

! 

P(A,B) = P(A | B)P(B) = P(B | A)P(A)    is  Baye's rule.  
 
This can be generalized to more than 2 classes:  
 
 

! 

P(A,B,C) = P(A | B,C)P(B,C) = P(A | B,C)P(B |C)P(C) 
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Independance 
 
There are situations where P(A | B) = P(A).  
Know whether B is true gives no informtion about A.  
In this case, we say that A and B independent.  Formally, this is written:  A ⊥ B 
 
  A ⊥ B  ⇔  P(A | B) = P(A) 
 
this is equivalent to    A ⊥ B  ⇔  P(A, B) = P(A)P(B)  
 
Because:  

! 

P(A | B) =
P(A,B)
P(B)

=
P(A)P(B)
P(B)

= P(A) 
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Conditional independence 
 
While independence can be useful, an event more important property is when two 
classes of events A and B are independent given a third class C.  
 
A and B are independent given C if  P(A | B, C) = P( A | C).  
 
Formally:   ( A ⊥ B | C)  ⇔  P(A | B, C) = P(A | C) 
 
Note that   ( A ⊥ B | C)  = ( B ⊥ A | C) ⇔  P(B | A, C) = P(B | C) 
 
Conditional probability and conditional independence provide powerful tools for 
building algorithms to learn to recognizing classes from observed properties and to 
learn to reason about hypotheses given evidence.  
 
To use these tools we need to be clear about what we mean by probability.  
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Probability 
 
There are two possible definitions of probability that we can use for reasoning and 
recognition:  Frequentialist and Axiomatic.  
 

Probability as Frequency of Occurrence 
 
A frequency-based definition of probability is sufficient for many practical problems.   
 
Assume that we have some form of sensor that generates observations belonging to 
one of K classes, Ck.  The class for each observation is "random". This means that the 
exact class cannot be predicted in advance.   

 
Suppose we have a set of M observations {Em}, for which Mk of these events belong 
to the class Ck.    The probability that one of these observed events from the set {Em} 
belongs to the class Ck. is the relative frequency of occurrence of the class in the set  
{Em}.  
 
 

! 

P(E " Ck ) =
Mk

M
 

 
If we make new observations under the same condition, then it is reasonable to 
expect the fraction to be the same. However, because the observations are random, 
there may be differences.  These differences will grow smaller as the size of the set of 
observations,  M,  grows larger.  This is called the sampling error.  
 
 Probability = relative frequency of occurrence.  
 
A frequency based definition is easy to understand and can be used to build practical 
systems. It can also be used to illustrate basic principles.  However it is possible to 
generalize the notion of probability with an axiomatic definition. This will make it 
possible to define a number of analytic tools. 
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Axiomatic Definition of probability 
 
An axiomatic definition of probability makes it possible to apply analytical 
techniques to the design of reasoning and recognition systems.  Only three postulates 
(or axioms) are necessary:   
 
In the following, let E be an observation (even), let S be the set of all events, and let 
Ck be the subset of events that belong to class k with K total classes.  
 
  

! 

"Ck :Ck # S    
  

! 

S = Ck
k=1,K
!  is the set of all events.  

 
Any function P(-) that obeys the following 3 axioms can be used as a probability:  
 
axiom 1:  

! 

P(E " Ck ) # 0    
axiom  2:  

! 

P(E " S) =1    
axiom  3 : 

! 

"Ci ,Cj # S  such that 

! 

Ci"Cj =# : 

! 

P(E " Ci#Cj ) = P(E " Ci )+P(E " Cj ) 
 
An axiomatic definition of probability can be very useful if we have some way to 
estimate the relative "likelihood" of different propositions.  
 
Let us define 

! 

"k  as the proposition that an event E belongs to class Ck: 

! 

"k # E $ Ck  
 
The likelihood of the proposition, 

! 

L("k ),  is a numerical function that estimates of its 
relative "plausibility" or believability of the proposition.  Likelihoods do not have to 
obey the probability postulates. 
 
We can convert a set of likelihoods into probabilities by normalizing so that the sum 
of all likelihoods is 1. To do this we simply divide by the sum of all likelihoods:  
 
 

! 

P("k ) =
L("k )

L("k )
k=1

K

#
 

 
Thus with axiomatic probability, any estimation of likelihood for the statement ωk 
can be converted to probability and used with Bayes rule. This is fundamental for 
Bayesian reasoning and for Bayesian recognition.  
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Histogram Representation of Probability 
 
We can use histograms both as a practical solution to many problems and to illustrate 
fundamental laws of axiomatic probability.   
 
A histogram is a table of "frequency of occurrence"  h(-) for a class of events.  
Histograms are typically constructed for numerical arguments h(k)  for k=1, K.  
 
However many modern programming languages provide a structure called a "hash", 
allowing the construction of tables using symbolic indexes.  
 
Suppose we have K classes of events, we can build a table of frequency of occurrence 
for observations from each class  h(E  ∈ Ck). 
 
Similarly if we have M observations of an event, {Em} and the event can be from K 
possible classes, k=1,…, K.  Suppose that the classes  
 
We can construct a table of frequency of occurrence for the class.  h(k).  
 
  ∀m=1, M : if Em ∈ Ck  then h(k) := h(k) + 1;  
 
Then for any event in E ∈ {Em} : 

! 

P(E " Ck ) = P(k) =
1
M
h(k)  

 
Assuming the observation conditions are the same,  given a new event,  E, 
 
     

! 

P(E " Ck ) = P(k) # 1
M
h(k) 

 

Probabilities of Numerical Properties. 
 
The notion of probability and frequency of occurrence are easily generalized to 
describe the likelihood of numerical properties (features), X, observed by sensors.  
For example, consider the height, measured in cm, of people present in this lecture 
today.   Let us refer to the height of each student m, as a "random variable" Xm.  X is 
"random" because it is not known until we measure it.  
 
We can generate a histogram, h(x),  for the M students present.  
For convenience we will treat height as an integer from the range 1 to 300.  
We will allocate a table  h(x), of 250 cells.  
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The number of cells is called the capacity of the histogram, Q.   
 
We then count the number of times each height occurs in the class.  
 
 ∀m=1, M : h(Xm) := h(Xm) + 1;  
 
After counting the heights we can make statements about the population of students. 
For example, the relative likelihood of height that a random student has a height of 
X=180cm is  
   L(X=180) = h(180) 
 
This is converted to a probability by normalizing so that the values of all likelihoods 
sum to 1 (axiom 2).  
 

 

! 

P(X = x) =
1
M
h(x)   where   

! 

M = h(x)
x=1

250

"  

 
We can use this to make statements about the population of students in the class:  
 
1)  The average height of a member of the class is:  
 

 

! 

µx = E{Xm} =
1
M

Xm
m=1

M

" =
1
M

h(x)
x=1

250

" # x  

 
Note that the average is the first moment, or center of gravity of the histogram.   
 
2) The variance is the square of the average difference from the mean:  
 

 

! 

" x
2 = E{(Xm #µx )

2} =
1
M

(Xm
m=1

M

$ #µx )
2 =

1
M

h(x)
x=1

250

$ % (x #µx )
2  

 
The average difference from the mean, 

! 

" x , is called the "standard deviation", and is 
often abbreviated "std."  In french we call this the "écart type".  
 
Average and variance are properties of the sample population.  
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Histograms with integer and real valued features 
 
If X is an integer value then we need only bound the range to use a histogram  
 If (x < xmin) then x := xmin; 
 If (x > xmax) then x := xmax; 
 
Then allocate a histogram of N=xmax cells.  
 
We may, for convenience, shift the range of values to start at 1, so as to convert 
integer  x to a natural number:  
 
 n := x – xmin+1 
 
This will give a set of N =xmax– xmin  +1 possible values for X.  
 
If X is real-valued and unbounded, we can limit it to a finite interval and then 
quantize with a function such as “trunc()” or “round()”.  The function trunc() 
removes the fractional part of a number.  Round() adds ½ then removes the factional 
part.   
 
To quantize a real X to N discrete natural numbers : [1, N] 
 If (X < xmin) then X := xmin; 
 If (X > xmax) then X := xmax; 

 

! 

n = round (N "1) #
X " xmin
xmax " xmin

$ 

% 
& 

' 

( 
) +1 

 

Symbolic Features 
 
Many modern languages contain a structure called a hash.  
This is a table h(x) that uses a symbolic value, x, an address.   
 
We can use a hash to generalize histograms for use with symbolic features.  
The only difference is that there is no "order" relation between the feature values.  
 
As before h(x) counts the number of examples of each symbol.  
For example with M training samples drawn from N symbolic values.  
 
 ∀m=1, M : h(Xm) := h(Xm) + 1;  
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Then for any random X,  
 
 

! 

p(X = x) =
1
M
h(x)   

 
Note that symbolic features do not have an order relation.   
Thus we cannot define an "average" value for a symbolic feature.   
We CAN estimate a most likely value.  
 
 

! 

ˆ x = arg"max
x

h(x){ }  

 

Probabilities of Vector Properties.  
 
We can also generalize to multiple properties.  For example, each person in this class 
has a height, weight and age.  We can represent these as three integers x1, x2 and x3. 

Thus each person is represented by the "feature" vector  
  

! 

! 
X =

x1
x2
x3

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
.  

We can build up a 3-D histogram, h(x1, x2, x3),  for the M persons in this lecture as:  
 
   

! 

"m =1,M :h(
! 
X m ) = h(

! 
X m )+1 

 
or equivalently:   ∀m=1, M : h(x1, x2, x3) := h(x1, x2, x3) + 1; 
  
and the probability of a specific vector is  

  

! 

P(
! 
X = ! x ) =

1
M

h(! x ) 

 
When each of the D features can have N values, the total number of cells in the 
histogram will be  

! 

Q = ND
 

 

Number of samples required 
 
Problem:  Given a feature x, with N possible values, how many observations, M, do 
we need for a histogram, h(x), to provide a reliable estimate of probability? 
 
The worst case Root Mean Square error is proportional to   

! 

O( Q
M
) .  

 
This can be estimated by comparing the observed histograms to an ideal parametric 
model of the probability density or by comparing histograms of subsets samples to 
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histograms from a very large sample. Let p(x) be a probability density function.  The 
RMS (root-mean-square) sampling error between a histogram and the density 
function is    
 
 

! 

ERMS = E h(x)" p(x)( )2{ } #O( QM ) 

 
The worst case occurs for a uniform probability density function.  
 
For most applications,   M ≥  8 Q  (8 samples per "cell") is reasonable  
(less than 12% RMS error).   
 
 


