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1 Detection and Tracking using Color 
 
Recall the Bi-Chromatic reflection function:   
 
 

! 

R(i,  e,  g,  ") =  # RS(i,  e,  g,  ") +  (1-#) RL (i,  ") 
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For Lambertian reflection, the intensity is generally determined by surface 
orientation, while color is determined by Pigment. 
 

  
 
1.1 Separating Specular and Lambertian Reflection.  
 
Consider what happens at a specular reflection.  
 
The specularity has the same spectrum as the illumination.  
 
The rest of the object has a spectrum that is the product of illumination and pigments.  
Suppose that the image be composed of color pixels,    

! 

! c (i, j) 
 
We can construct an RGB color histogram using a 3 Dimensional table h(R, G, B).   
 
   

! 

"
! c (i, j) :   h(! c (i, j)) =h(! c (i, j))+1 
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Suppose the image contains only a single (non-planar) object that obeys a bi-chromatic 
reflection model. If the image contains a specular reflection, then two clear axes will  
emerge.  
 
One axis from the origin to the RGB of the product of the illumination and the source.  
The other axis towards the RGB representing the illumination.  
 
We can fit lines to these two axes. The dominant line indicates the object pigment 
color modified by the illumination;   P(λ)S(λ). The line intersects the edge of the cube 
at this color.  
 
The second (less dominant line) indicates the source color S(λ). Source color can be 
observed from the point where this line exits the cube.  
 
Projecting ALL pixels onto these two lines gives two images:  
 
1) A Lambertian image (without the specularity) and  
2) A specular image (without the Lambertian component).  
 
Lesson: color statistics, particularly histograms, can provide powerful analysis tools . 
 
1.2 Histograms as an Estimation of Probability of Color 
 
A histogram is a table of frequency of occurrence. Histograms have many uses in 
image processing and computer vision.  One such use is for pixel level probabilistic 
detection of objects based on local appearance. A simple example is the use of color 
histograms to detect objects based on color statistics.  
 
Assume that we have a color image, where each pixel (i,j) is a color vector,   

! 

! c (i, j), 
composed of 3 integers between 0 and 255 representing Red, Green and Blue.  
 

 

  

! 

! c (i, j) =
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We can build a color histogram of the image by counting the number of times that 
each unique value of (R, G, B) occurs in the image.  To do this we allocate a table 
h(r, g, b) of 256 x 256 x 256 cells, with each cell initially set to zero. The table 
h(r,g,b) has 2563 = 224 =  16 Mega Pixels.  
 
We then visit each pixel and add one to the value of the cell that corresponds to its 
value of R, G, B 
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! 

i, j
"h(! c (i, j)) = h(! c (i, j))+1 

 
The table   

! 

h(! c ) then represents the frequency of occurrence for each possible color 
vector   

! 

! c .   Given that the image is composed of M pixels, then the this table tells us 
the probability of finding a pixel of color   

! 

! c  at any position in the image.  
 
 

  

! 

P(! c ) =
1
M

h(! c ) 

 
If we take a second image of the same scene, and we assume that the color and 
illumination are similar, we can use the histogram to predict the probability of colors 
vectors in the second image.  
 
1.3 Bayesian Object Detection with Color 
 
Suppose that we have K RGB images composed of R·C pixels, Ck(i, j). This gives a 
total of M=K·R·C pixels. Suppose that we have a subset, T (for target) of these pixels 
that belong to a target class. Suppose that T contains MT pixels.  
 
We allocate two tables  h(r, g, b) and ht(r, g, b) and as before and use these to 
construct two histograms ;  
 
 

  

! 

i, j ,k
"h(! c k (i, j)) = h(! c k (i, j))+1 

 
  

! 

"
(i, j,k )# T

hT (
! c k (i, j)) = hT (

! c k (i, j))+1 

 
For any color vector,   

! 

! c ,  have TWO probabilities :  
 
 

  

! 

P(! c ) =
1
M

h(! c ) and 
  

! 

P(! c |T ) =
1

MT

hT (
! c )  

 
Bayes rule tells us that we can estimate the probability that a pixel belongs to an 
object given its color as:  
 
 

  

! 

P(T | ! c ) =
P(! c | T)P(T)

P(! c )
 

 
We have  

! 

P(! c | T) and   

! 

P(! c ).  P(T) is the probability that a pixel belongs to a target. For 
the training image, this is given by  
 
 

! 

P(T ) =
MT

M
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From this we can show that the probability of a target, T,  is simply the ratio of the 
two tables.  

 

  

! 

P(T | ! c ) =
P(! c | T)P(T)

P(! c )
=

1
MT

ht (
! c ) " M t

M
1
M

h(! c )
=

hT (
! c )

h(! c )  

We can use this to compute a lookup table Lt(  

! 

! c ) 
  

! 

LT (
! c ) =

hT (
! c )

h(! c )
 

 
If we ASSUME that a new image, x(i,j), has similar illumination and color 
composition then we can use this technique to assign a probability to each pixel by 
table lookup. The result is an image in which each pixel is a probability T(i,j)   that 
the pixel (i,j)  belongs to the target T.  
 
 

! 

T (i, j) = LT (x(i, j)) 
 
The reliability is improved by using more training images.   
 
The naive statistics view says to have at least 8 training samples for histogram cell.  
For example, in our RGB example, h(c) was composed of  
 
 Q = 28

 · 28
 · 28

  = 224 cells.  
 
Thus we need M = 23 · 224 = 227

  training pixels. This is not a problem for 

  

! 

P(! c ) =
1
M

h(! c )   but may be a problem for  
  

! 

P(! c |T ) =
1

MT

hT (
! c ) .  

 
(Note that a 1024 x 1024 image contains 220 pixels. This is the definition of 1 Mega) 
 
Q is the "capacity" of the histogram, measured as the number of cells.  
 
Q = ND  where N is the number of values per feature and D is the number of features.  
 
A more realistic view is that the training data must contain a variety of training 
samples that reflect that variations in the real world.  
 
What can we do?   Often we can reduce both the number, D, of features  and the 
number of values, N, for each feature.   
 
For example, for many color images, N=32 color values are sufficient to detect 
objects.  We simply divide each color  R, G, B by 8.  
 
 R' = Trunc(R/8),  G'=Trunc(G/8),   B'=Trunc(B/8).  
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We can also use our knowledge of physics to look for features that are "invariant".  
 
1.4 Color Skin Detection 

 
Luminance captures surface orientation (3D shape) while Chrominance is a signature 
for object pigment (identity).  Thus it is convenient to transform the (RGB) color 
pixels into a color space that separates Luminance from Chrominance.  
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Normalizing out luminance provides a popular space for skin detection: the (r,g) 
space.  
 
 Luminance:  L= R+G+B 
 
 Chrominance :  

! 

r = c1 =
R

R+G + B
  

! 

g = c2 =
G

R+G + B
  

 
These are often called "r" and "g"  in the literature. The (r, g) space is often used to 
detect skin colored pixels. It is common to normalize r and g to natural numbers  
coded with N values between 0 and  N – 1 by :  
  
 r  = trunc( N · 

! 

R
R+G + B

)  g  = trunc(N · 

! 

G
R+G + B

) 

 
Skin pigment is generally always the same chrominance value.  Luminance can 
change with pigment density, and skin surface orientation, but chrominance will 
remain invariant.  

Thus we can use 

! 

r
g
" 

# 
$ 
% 

& 
'  as an invariant color signature for detecting skin in images. 

 
Suppose we have a set of K training images {ck(i,j)} of size RxC where each pixel is 
an RGB color vector. This gives a total of  M=KxRxC color pixels.   Suppose that 
MSkin of these are labeled as skin pixels.  
 
We can simplify our technique by projecting these onto chrominance pixels. From 
experience, N = 32 color values seems to work well for skin.  
 
We allocate two table  :  h(r,g) and hskin(r,g) of size  N x N. 
 
For all i,j,k in the training set {ck(i,j)} :  
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BEGIN 
 r = trunc( N · 

! 

R
R+G + B

)  g = trunc(N · 

! 

G
R+G + B

) 

 
 

! 

h(r,g) = h(r,g)+1 
 
 IF the pixel ck(i,j) is skin THEN  
  

! 

hskin(r,g) = hskin(r,g)+1 
 
END 
 
As before, we can obtain a lookup table Lskin(r,g) that gives the probability that a 
pixel is skin.   
 
 

! 

Lskin(r,g) =
hskin(r,g)
h(r,g)

 

 
Given a new RGB image C(i,j):  
 
 r = trunc( N · 

! 

R
R+G + B

)  g = trunc(N · 

! 

G
R+G + B

) 

 
 Tskin(i,j) = Lskin (r(i,j), g(i,j))  
 

  
(images from a Bayesian skin tracking in real time - 1993) 

 
We can improve the detection by tracking skin colored regions.  
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2 Bayesian Tracking of Gaussian Blobs 
 
Rather than represent a skin region as a collection of pixels, we can calculate a 
Gaussian Blob.  A "Blob" represents a region of an image.  Gaussian blobs express a 
region in terms of moments.   
 
Assume of image of probabilities of the detection of a target: T(i,j), where for each 
pixel:  
 
  T(i,j) = LT(r(i,j), g(i,j))  
 
The zeroth moment of the probabilities is the mass (sum of probabilities). Average 
mass represents confidence.  
 
The first moment gives is the center of gravity. This is the "position" of the blob. 
 
The second moment is the covariance.  This gives size and orientation. 
 
We typically enclose the blob in some rectangular Region of Interest (ROI) in order 
to avoid "distraction" by neighboring blobs.  The ROI is obtained by some form of 
estimation or a priori knowledge. In continuous operation the ROI be provided by 
tracking.  
 
Let us represent the ROI as a rectangle : (t,l,b,r)   
 
 t - "top" - first row of the ROI.  
 l - "left" - first column of the ROI.  
 b - "bottom" - last row of the ROI 
 r - "right"  -last column of the ROI.  
 
(t,l,b,r)  can be seen as a bounding box, expressed by opposite corners (l,t), (r,b) 
We will compute the moments within this ROI (bounding box).  
  
2.1 Moment Calculations for Blobs 
 
Given a target probability image T(i,j) and a ROI (t,l,b,r):  
 

 Sum:   

! 

S =
i=l

r

" T
j=t

b

" (i, j) 

 
We can estimate the "confidence" as the average detection probability:  
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 Confidence:  

! 

CF =
S

(b " t)(r " l)
 

 
First moments:   

  

! 

x = µi =
1
S i=l

r

" T
j=t

b

" (i, j) # i   

  

! 

y = µ j =
1
S i=l

r

" T
j=t

b

" (i, j) # j  

 
 Position is the center of gravity: (µi, µj)  
 
 We will use this as the position of the blob.  
   
Second Moments:   

  

! 

" i
2 =
1
S i=l

r

# T
j=t

b

# (i, j) $ (i %µi )
2 

  

! 

" j
2 =
1
S i=l

r

# T (i, j) $ ( j %µ j )
2

j=t

b

#  

  

! 

" ij
2 =
1
S i=l

r

# T
j=t

b

# (i, j) $ (i %µi ) $ ( j %µ j ) 

 

These compose a covariance matrix:  

! 

C =
" i
2 " ij

2

" ij
2 " j

2

# 

$ 
% 

& 

' 
(  

 
The principle components (λ1, λ2) determine the length and width.  
The principle direction determines the orientation of the length.  
We can discover these by principle components analysis.  

!1!2

 
 

! 

RCRT =" =
#1
2 0
0 #2

2

$ 

% 
& 

' 

( 
)  

where  

 

! 

R =
cos(" ) #sin(" )
sin(" ) cos(" )
$ 

% 
& 

' 

( 
)  

 
The length to width ratio,  λ1/λ2, is an invariant for shape.  
The angle θ is a “Covariant” for orientation.  
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We can use the “eigenvalues”, or characteristic values, λ1, λ2, to define the “width 
and height” of the blob:  
 
For example:  
 
 w=λ1, h=λ2  

This suggests a "feature vector" for the blob: 

  

! 

! 
X =

x
y
w
h
"

# 

$ 

% 
% 
% 
% 
% % 

& 

' 

( 
( 
( 
( 
( ( 

 

where  x= µi, y = µj, w=λ1, h=λ2  and  

! 

CF =
S

(b " t)(r " l)
  

   
The confidence (CF) can be seen as the “Likelihood” that the model for the blob is 
correct. 
 
Tracking allows us to continually update an estimate for the features of the Blob, 
even if the blob is temporarily lost to occlusion or noise.  
 
The tracked object is often referred to as a "target".  The vector   

! 

! 
X  provides the 

“model” for the target blob:  
 

Blob model: 

  

! 

! 
X =

x
y
w
h
"

# 

$ 

% 
% 
% 
% 
% % 

& 

' 

( 
( 
( 
( 
( ( 

 Precision:  

! 

P =

" xx
2 " xy

2 " xw
2 " xh

2 " x#
2

" yx
2 " yy

2 " yw
2 " yh

2 " y#
2

" wx
2 " wy

2 " ww
2 " wh

2 " w#
2

" hx
2 " hy

2 " hw
2 " hh

2 " h#
2

"#x
2 "#y

2 "#w
2 "#h

2 "##
2

$ 

% 

& 
& 
& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
) 
) 

   

along with CF.   (Confidence) 
 
The covariance P expresses our “uncertainty” about the values of each of the 
parameters. This is also called the “Precision”.  
 
Formally, precision is defined as the  2nd moment of the error of the blob model.  
Let   

! 

! 
X  be the TRUE (unknown) model and   

! 

! ˆ X  be the estimated value. The error,   

! 

! 
E ,  is 

the difference 
 
   

! 

! 
E =
! 
X "
! ˆ X  

 
and then.   
   

! 

P =
! 
E 
! 
E T  
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In most cases, the true value is unknown, and so the precision must be estimated from 
the difference between the predicted and observed blobs.  
  
This precision can be initialized to a very small value.  Our uncertainty about the 
precision will grow over time between observations, due to unobserved motion, 
acceleration, etc.  We can estimate this growth by the difference between a predicted 
blob and its observation. This process will tend to reveal covariance between terms of 
the matrix.  
 
If possible it is  preferred to estimate P from some known values of   

! 

! 
X  or from 

knowledge about the sensors and from “experience”.  
 
In the absence of information about the correlation between features in X, the 
Covariance can be initialised as a diagonal matrix.  The tracking process will review 
any correlations.  
 

2.2 Bayesian Tracking 
 
A Bayesian tracker is a recursive estimator, composed of three phases:  
Predict, Detect, Update.  
 

 
 
Detection can be provided by detecting the blob using color statistics within a target 
“Region of Interest” given by a bounding box centered on a previous position. The 
size of this box is determined by the estimated size of the blob enlarged by the  
uncertainty P. 
 
For this we must predict the new position, detect (observe) the blob, and the update 
the estimate.  
 
The following is a “zero-th” order Kalman filter.  This is the simplest (almost trivial) 
case of a Bayesian tracker. A first order Kalman filters estimates parameters and their 
derivatives.  The math is more complex but the principles are the same.  
 
2.3 Temporal Prediction 
 
The following describes prediction and estimation (updating).  
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In the absence of any knowledge of movement, we can predict that the blob will be at 
the last observed position.  This is written as :  
 
   

! 

! 
X t

* "
! ˆ X t#1 

 
This is called a "process model".  The process model predicts the state vector at time t 
given the estimate at time t-∆t:   
 
 Xt

*  = argmax{ p(Xt
* | Xt–∆t)} 

 
This can be written as:  
 
 

! 

Xt
* := "(#t) ˆ X t$#t + R  

 

! 

Pt
* := "(#t) ˆ P t$#t"(#t)T +Qx    

 
For the simple zeroth order filter 

! 

"(#t) is the identity matrix.  R is the expected 
"error" of the process model, due to unmodeled derivatives and noise. The 
expectation of the error is almost always 0. 
 
   

! 

R = E{
! 
X "
! ˆ X } = 0  

 
Q is the second moment of the process model error.  
 
   

! 

Q = E{(
! 
X "
! ˆ X )(
! 
X "
! ˆ X )T }  

 
Q captures the loss of precision in the evolution of the process noise.  
 
In a first order Kalman filter this would have been 
 
   

! 

! 
X t
*"
! 
X t#1 +$t

! 
% X t#1 

 
where 

  

  

! 

! 
" X t#1 =

d
dt

x
y
w
h
$

% 

& 

' 
' 
' 
' 
' ' 

( 

) 

* 
* 
* 
* 
* * 

=

" x 
" y 
" w 
" h 
" $ 

% 

& 

' 
' 
' 
' 
' ' 

( 

) 

* 
* 
* 
* 
* * 

 

 
and ∆t is the time step. But let us keep the explanation simple for now.  
 
Because of unobserved velocity and acceleration, etc, the estimate of the blob grows 
more uncertain with time. This is estimated by a prediction error : 

! 

Q"t  
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! 

Ct
* = ˆ C t"#t +Q#t#t 2  

 
The values in 

! 

Q"t  can be "calibrated" by measuring the average error between 
predicted and observed blobs from a labeled training sequence, or it can be 
"estimated".  
 
We then use the predicted target blob to compute a new predicted ROI for the 
detection as described above. 
 
2.4 Detecting the target 
 
For each sensor, a predicted sensor signal Yt

* is generated based on current the 
estimated system state Xt

*.  
 
 Yt

*  = argmax{p(Yt | Xt
*)}.  

 
We obtain this prediction from the predicted target model.  
 
 

! 

Yt
* = HX

Y Xt
* 

 
In the trivial case of a zeroth order tracker, if   

! 

! 
X  and   

! 

! 
Y  have the same features than 

! 

HX
Y  is the identity matrix.  Else 

! 

HX
Y  can "extract" observed features from a more 

complex model.  
 
In the case of blob detection, we can estimate the bounding box using all 5 
parameters of 

! 

Yt
*.  In this case 

! 

HX
Y  is the identity matrix.   

 
2.5 Updating the Estimated Blob Parameters 
 
 
Detection can introduce new errors, such distraction by  adjacent target 
To minimize such errors, we use a technique from robust estimation. 
We weight the detected pixels by the predicted Normal density.  
 
      

! 

ˆ P (i, j) = PT (i, j) "N (i, j; ! µ t
*,  Ct

* ) 
 
Where PT(i,j) is the new observed probability image at the new time, t.  
and    

! 

( ! µ t
*,  "t

* ) are extracted from   

! 

! 
X t
* and 

! 

Ct
*  

 

 
  

! 

! 
µ t
* =

xt
*

yt
*

" 

# 
$ 

% 

& 
'  and 

! 

"t
* =

# xx
2 # xy

2

# yx
2 # yy

2

$ 

% 
& 

' 

( 
)  
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This is an example of “robust” estimation.  
 
We then estimate the new position and covariance using this product:  
 

First moments:   

! 

ˆ µ i =
1
S i=l

r

" ˆ P 
j=t

b

" (i, j) # i   

! 

ˆ µ j =
1
S i=l

r

" ˆ P 
j=t

b

" (i, j) # j  

 

Second Moments:   

! 

ˆ " i
2 =

1
S i=l

r

# ˆ P 
j=t

b

# (i, j) $ (i % ˆ µ i )
2 

    

! 

ˆ " j
2 =

1
S i=l

r

# ˆ P 
j=t

b

# (i, j) $ ( j % ˆ µ j )
2  

    

! 

ˆ " ij
2 =

1
S i=l

r

# ˆ P 
j=t

b

# (i, j) $ (i % ˆ µ i ) $ ( j % ˆ µ j ) 

 

which gives:  
  

! 

! ˆ µ t =
ˆ µ i
ˆ µ j

" 

# 
$ 

% 

& 
'  and 

! 

ˆ C t =
ˆ " i

2 ˆ " ij
2

ˆ " ij
2 ˆ " j

2

# 

$ 
% 

& 

' 
(  

 
From which we can update the new estimate :   

! 

! ˆ X t  
 
In the Kalman Filter, this is modeled as :  
 
 Xt  = argmax{p(Xt | Xt

*, Yt –Yt
*)} 

 
 
2.6 Managing Lost Targets 
 
Targets can disappear due to occlusion or lost tracking.   For stability we accumulate 
confidence of targets over time.  
 
 CFt = α CF + (1- α) CFt–∆t + 
 
CFmin is the minimum required average probability per pixel to detect a target.  
 
 If  CFt ≤ CFmin then a target is removed.  
 
The weight α determines the decay rate for lost targets.  
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3 The Kalman Filter 
 
Three key steps characterise Bayesian estimation problems (including Kalman 
filters).  
 
1) A process model:  The process model predicts the state vector at time t given the 
estimate at time t-∆t:   
 
 Xt

*  = argmax{ p(Xt
* | Xt–∆t)} 

 
2) A sensor model: For each sensor, a predicted sensor signal Yt

* is generated based 
on current the estimated system state Xt

*.  
 
 Yt

*  = argmax{p(Yt | Xt
*)}.  

 
3) Re-estimation: A new estimated value, Xt is computed based on information 
provided by the  difference between the predicted and observed sensor values.  
 
 Xt  = argmax{p(Xt | Xt

*, Yt –Yt
*)} 

 
The Kalman filter uses a linear dynamic model to provide these estimates. That is, the 
process model and sensor models are represented by linear equations. A fixed time 
step and previously estimated derivative values are used to estimate the current value 
of the state variables. A quadratic form this same dynamic equation is used to predict 
the error of the state vector.  
 
A simple zeroth order Kalman filter may be used to track bodies, faces and hands in 
video sequences. In the following example, let us assume a line segment target whose  
properties are represented by a "state vector" composed of position, size and 
orientation (x, y, s, θ) where s is the length (size) of the segment.   
 
A 4x4 covariance matrix is associated with this vector to represent correlations in 
errors between parameters. Although prediction does not change the estimated 
position, it does enlarge the uncertainties of the position and size of the expected 
target.  The expected size provides bounds on the sample rate, as we limit the sample 
rate so that there are at least 8 pixels across an expected target.  
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3.1 State Vector  
 
The target state vector, 

! 

ˆ X t is composed of the position, scale and orientation of the 
target. For example, this can represent a human face.  
 

 

! 

ˆ X t =

x
y
s
"

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

 

 
where  x, y are the position of the target in pixels 
 s is the size or scale of the target, and  
 θ  is the image plane orientation of the target.  
 
In the case of a first order filter, each of the parameters is accompanied by first 
temporal derivative. 
 

 

! 

ˆ X t =

x
˙ x 
y
˙ y 
s
˙ s 
"
˙ " 

# 

$ 

% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 
( 
( 
( 
( 
( 

 

 
Where the dot indicates temporal derivative.  
 
 

! 

˙ x = "x
"t

 

 
The Kalman filter equations are able to use information from the difference of 
observed and predicted state to estimate the temporal derivatives.  
 
3.2 Confidence and Uncertainty 
 
The state vector is accompanied by a covariance matrix and a confidence factor.  The 
confidence factor is an integer between 0, and a maximum confidence value.  
 
 CFt  ∈  [0, CFmax] 
 
The position uncertainty (or precision) is the covariance matrix for the state vector 
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For the case of a first order filter, this matrix becomes 8 by 8 with covariance 
between all terms.  
 
For each target, at each time, t, the tracker maintains an estimated state

! 

ˆ X t  as well as 
its precision 

! 

ˆ P t   and confidence factor, CFt. Based on a previous state and precision 

! 

ˆ X t , 

! 

ˆ P t  and CFt as well as the observation  

! 

ˆ P t   from detection function  accompanied by 
the observed precision Py, and detection confidence CFy.  
 
 

! 

ˆ X t , ˆ P t ,CFt = F{Xt+"t
* ,Pt+"t

* ,CFt#"t ,Y , Py,CFy}  
 
Given a target at time t-∆t, the prediction equations predict its new position, and 
validation gate at time t. The general form of the prediction equations are :  
 
 

! 

Xt
* := "(#t) ˆ X t$#t + R  

 

! 

Pt
* := "(#t) ˆ P t$#t"(#t)T +Qx    

 
These equations are a linear estimation of movement based on a Taylor series 
approximation.  
 
The term R is a residue that represents higher order (non-estimated) derivatives. This 
expected value of this term is zero and thus R is commonly omitted.  The second 
moment of R represents the uncertainty due to accelerations (and higher order 
derivatives). Thus second moments, Q, estimates the loss of precision due to higher 
order terms.  
 
 Q = E {R RT}  
 
When included in the prediction, the term Q provides to an additive growth in the 
validation gate that is translated to the search region. When a target is detected, this 
growth is disappears in the update phase. However if no target is detected, the result 
is that the validation gate (and thus the region of interest) grows with each frame until 
the target is re-acquired or until the target is declared lost. 
 
For a first order filter, the prediction matrix ϑ(∆t) predicts new values as a function 
of the time step and the estimated derivatives. 
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In the case of face tracking, we generally assume that face accelerations are too rapid 
to be estimated. Thus we may estimate only target position (order 0 tracking) or 
position and velocity (order 1 tracking). In this case, the prediction matrix, ϕ(∆t), 
becomes a trivial identity matrix:  
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In this case our prediction equations are reduced to 
 
 

! 

Xt
* = ˆ X t–"t   

 

! 

Pt
* = ˆ P t–"t +Qx   

  
A validation gate provides a region of interest (ROI), which serves to limit estimation 
to the region where the target can be detected.  For face detection, this region of 
interest specifies a range of positions and scales and possibly orientations at which 
the target may be sought.  This greatly accelerates processing by avoiding processing 
unnecessary pixels.  
 
 ROI = (xmin, xmax,  ymin, ymax, smin, smax, θmin, θmax) 
 
The ROI is computed using the scale to define the width and height of a rectangular 
region over which the target will be sought. A ROI  based on three standard 
deviations reasonable size search region. Such a ROI is defined can be defined as  
 
 xmin = xt

 – 3σxx  
 xmax = xt

 + 3σxx  
 ymin = yt

 – 3σyy 

 ymax = yt
 + 3σyy 

 smin =  st
 – 3σss 

 smax =  st
 + 3σss 

 smin =  st
 – 3σss 

 smax =  st
 + 3σss 
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 θmin =  θt
 – 3σss 

 θmax =  θt
 + 3σss 

 
This can then be used to drive face detection process using a cascade of linear 
classifiers. The resulting face location is noted as the observed location  
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The difference between the predicted and observed face locations is known as the 
innovation:  
 
  Innovation: 

! 

(Yt – Xt
* ) 

 
For the orientation uncertainty, we propose a fixed value, determined from observing 
examples of faces, σθ.  This scale becomes the observed uncertainty: Py 

 

 

! 

Py =

" k
2 0 0 0
0 " k

2 0 0
0 0 " k

2 0
0 0 0 "#

2

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

 

 
3.3 State Estimation 
 
This scale is used to update the precision of the face position estimate. The estimated 
state vector is updated by using the difference between predicted and estimated 
position as an "innovation".  In the case of the 0th order filter, the equations are 
relatively simple. We first compute a Kalman "Gain matrix:  
 
 

! 

K = Pt
*(Pt

* – Py )
"1 

 
from this we can compute the following update equations:  
 
 

! 

ˆ X t = Xt
* + K(Yt – Xt

* ) 
 

! 

ˆ P t = Pt
* – KPt

* 
  
The resulting algorithm in the case of a 1st order filter, a transformation matrix, 

! 

Hx
y  

used to project X onto the observed variables Y.  
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3.4 Summary of Kalman filter equations.  
 
1) Process model: Tremporal prediction.  
  
 

! 

Xt
* := "(#t) ˆ X t$#t + R  

 

! 

Pt
* := "(#t) ˆ P t$#t"(#t)T +Qx    

 
2) Sensor Model:  Observation prediction - 
 

! 

HX
Y  predicts observed vector from state vector 

 
 

! 

Yt
* = HX

Y Xt
* 

 

! 

Py = HX
YPt

*HX
Y  

 
3) Observation and update:  
 
 

! 

K = Pt
*(Pt

* – Py )
"1  (Kalman Gain) 

 

! 

ˆ X t = Xt
* + K(Yt – Xt

* ) 
 

! 

ˆ P t = Pt
* – KPt

* 
  


