
Computer Vision
James L. Crowley

M2R MoSIG option GVR Fall Semester
 10 October 2014

Lesson 3

Detecting and Tracking Objects with Color

Lesson Outline:

1 Detection and Tracking using Color..2

1.1 Separating Specular and Lambertian Reflection..2
1.2 Histograms as an Estimation of Probability of Color3
1.3 Bayesian Object Detection with Color ..4
1.4 Color Skin Detection ..6

2 Bayesian Tracking of Gaussian Blobs ...8
2.1 Moment Calculations for Blobs ..8
2.2 Bayesian Tracking .. 11
2.3 Temporal Prediction ...11
2.4 Detecting the target... 13
2.5 Updating the Estimated Blob Parameters .. 13
2.6 Managing Lost Targets ...14

3 The Kalman Filter ... 15
3.1 State Vector ..16
3.2 Confidence and Uncertainty..16
3.3 State Estimation.. 19
3.4 Summary of Kalman filter equations. ... 20

2

1 Detection and Tracking using Color

Recall the Bi-Chromatic reflection function:

!

R(i, e, g, ") = # RS(i, e, g, ") + (1-#) RL (i, ")

Surface

LumieresComposant
Speculaire

Composant
Lambertian

Pigment

For Lambertian reflection, the intensity is generally determined by surface
orientation, while color is determined by Pigment.

1.1 Separating Specular and Lambertian Reflection.

Consider what happens at a specular reflection.

The specularity has the same spectrum as the illumination.

The rest of the object has a spectrum that is the product of illumination and pigments.
Suppose that the image be composed of color pixels,

!

! c (i, j)

We can construct an RGB color histogram using a 3 Dimensional table h(R, G, B).

!

"
! c (i, j) : h(! c (i, j)) =h(! c (i, j))+1

Couleur
de la Lumiere

Couleur
du Objet

R

V

B

3

Suppose the image contains only a single (non-planar) object that obeys a bi-chromatic
reflection model. If the image contains a specular reflection, then two clear axes will
emerge.

One axis from the origin to the RGB of the product of the illumination and the source.
The other axis towards the RGB representing the illumination.

We can fit lines to these two axes. The dominant line indicates the object pigment
color modified by the illumination; P(λ)S(λ). The line intersects the edge of the cube
at this color.

The second (less dominant line) indicates the source color S(λ). Source color can be
observed from the point where this line exits the cube.

Projecting ALL pixels onto these two lines gives two images:

1) A Lambertian image (without the specularity) and
2) A specular image (without the Lambertian component).

Lesson: color statistics, particularly histograms, can provide powerful analysis tools .

1.2 Histograms as an Estimation of Probability of Color

A histogram is a table of frequency of occurrence. Histograms have many uses in
image processing and computer vision. One such use is for pixel level probabilistic
detection of objects based on local appearance. A simple example is the use of color
histograms to detect objects based on color statistics.

Assume that we have a color image, where each pixel (i,j) is a color vector,

!

! c (i, j),
composed of 3 integers between 0 and 255 representing Red, Green and Blue.

!

! c (i, j) =

R
G
B

"

$
$
$

%

&

'
'
'

We can build a color histogram of the image by counting the number of times that
each unique value of (R, G, B) occurs in the image. To do this we allocate a table
h(r, g, b) of 256 x 256 x 256 cells, with each cell initially set to zero. The table
h(r,g,b) has 2563 = 224 = 16 Mega Pixels.

We then visit each pixel and add one to the value of the cell that corresponds to its
value of R, G, B

4

!

i, j
"h(! c (i, j)) = h(! c (i, j))+1

The table

!

h(! c) then represents the frequency of occurrence for each possible color
vector

!

! c . Given that the image is composed of M pixels, then the this table tells us
the probability of finding a pixel of color

!

! c at any position in the image.

!

P(! c) =
1
M

h(! c)

If we take a second image of the same scene, and we assume that the color and
illumination are similar, we can use the histogram to predict the probability of colors
vectors in the second image.

1.3 Bayesian Object Detection with Color

Suppose that we have K RGB images composed of R·C pixels, Ck(i, j). This gives a
total of M=K·R·C pixels. Suppose that we have a subset, T (for target) of these pixels
that belong to a target class. Suppose that T contains MT pixels.

We allocate two tables h(r, g, b) and ht(r, g, b) and as before and use these to
construct two histograms ;

!

i, j ,k
"h(! c k (i, j)) = h(! c k (i, j))+1

!

"
(i, j,k)# T

hT (
! c k (i, j)) = hT (

! c k (i, j))+1

For any color vector,

!

! c , have TWO probabilities :

!

P(! c) =
1
M

h(! c) and

!

P(! c |T) =
1

MT

hT (
! c)

Bayes rule tells us that we can estimate the probability that a pixel belongs to an
object given its color as:

!

P(T | ! c) =
P(! c | T)P(T)

P(! c)

We have

!

P(! c | T) and

!

P(! c). P(T) is the probability that a pixel belongs to a target. For
the training image, this is given by

!

P(T) =
MT

M

5

From this we can show that the probability of a target, T, is simply the ratio of the
two tables.

!

P(T | ! c) =
P(! c | T)P(T)

P(! c)
=

1
MT

ht (
! c) " M t

M
1
M

h(! c)
=

hT (
! c)

h(! c)

We can use this to compute a lookup table Lt(

!

! c)

!

LT (
! c) =

hT (
! c)

h(! c)

If we ASSUME that a new image, x(i,j), has similar illumination and color
composition then we can use this technique to assign a probability to each pixel by
table lookup. The result is an image in which each pixel is a probability T(i,j) that
the pixel (i,j) belongs to the target T.

!

T (i, j) = LT (x(i, j))

The reliability is improved by using more training images.

The naive statistics view says to have at least 8 training samples for histogram cell.
For example, in our RGB example, h(c) was composed of

 Q = 28

 · 28
 · 28

 = 224 cells.

Thus we need M = 23 · 224 = 227

 training pixels. This is not a problem for

!

P(! c) =
1
M

h(! c) but may be a problem for

!

P(! c |T) =
1

MT

hT (
! c) .

(Note that a 1024 x 1024 image contains 220 pixels. This is the definition of 1 Mega)

Q is the "capacity" of the histogram, measured as the number of cells.

Q = ND where N is the number of values per feature and D is the number of features.

A more realistic view is that the training data must contain a variety of training
samples that reflect that variations in the real world.

What can we do? Often we can reduce both the number, D, of features and the
number of values, N, for each feature.

For example, for many color images, N=32 color values are sufficient to detect
objects. We simply divide each color R, G, B by 8.

 R' = Trunc(R/8), G'=Trunc(G/8), B'=Trunc(B/8).

6

We can also use our knowledge of physics to look for features that are "invariant".

1.4 Color Skin Detection

Luminance captures surface orientation (3D shape) while Chrominance is a signature
for object pigment (identity). Thus it is convenient to transform the (RGB) color
pixels into a color space that separates Luminance from Chrominance.

!

L
C1
C2

"

$
$
$

%

&

'
'
'
(

R
G
B

"

$
$
$

%

&

'
'
'

Normalizing out luminance provides a popular space for skin detection: the (r,g)
space.

 Luminance: L= R+G+B

 Chrominance :

!

r = c1 =
R

R+G + B

!

g = c2 =
G

R+G + B

These are often called "r" and "g" in the literature. The (r, g) space is often used to
detect skin colored pixels. It is common to normalize r and g to natural numbers
coded with N values between 0 and N – 1 by :

 r = trunc(N ·

!

R
R+G + B

) g = trunc(N ·

!

G
R+G + B

)

Skin pigment is generally always the same chrominance value. Luminance can
change with pigment density, and skin surface orientation, but chrominance will
remain invariant.

Thus we can use

!

r
g
"

$
%

&
' as an invariant color signature for detecting skin in images.

Suppose we have a set of K training images {ck(i,j)} of size RxC where each pixel is
an RGB color vector. This gives a total of M=KxRxC color pixels. Suppose that
MSkin of these are labeled as skin pixels.

We can simplify our technique by projecting these onto chrominance pixels. From
experience, N = 32 color values seems to work well for skin.

We allocate two table : h(r,g) and hskin(r,g) of size N x N.

For all i,j,k in the training set {ck(i,j)} :

7

BEGIN
 r = trunc(N ·

!

R
R+G + B

) g = trunc(N ·

!

G
R+G + B

)

!

h(r,g) = h(r,g)+1

 IF the pixel ck(i,j) is skin THEN

!

hskin(r,g) = hskin(r,g)+1

END

As before, we can obtain a lookup table Lskin(r,g) that gives the probability that a
pixel is skin.

!

Lskin(r,g) =
hskin(r,g)
h(r,g)

Given a new RGB image C(i,j):

 r = trunc(N ·

!

R
R+G + B

) g = trunc(N ·

!

G
R+G + B

)

 Tskin(i,j) = Lskin (r(i,j), g(i,j))

(images from a Bayesian skin tracking in real time - 1993)

We can improve the detection by tracking skin colored regions.

8

2 Bayesian Tracking of Gaussian Blobs

Rather than represent a skin region as a collection of pixels, we can calculate a
Gaussian Blob. A "Blob" represents a region of an image. Gaussian blobs express a
region in terms of moments.

Assume of image of probabilities of the detection of a target: T(i,j), where for each
pixel:

 T(i,j) = LT(r(i,j), g(i,j))

The zeroth moment of the probabilities is the mass (sum of probabilities). Average
mass represents confidence.

The first moment gives is the center of gravity. This is the "position" of the blob.

The second moment is the covariance. This gives size and orientation.

We typically enclose the blob in some rectangular Region of Interest (ROI) in order
to avoid "distraction" by neighboring blobs. The ROI is obtained by some form of
estimation or a priori knowledge. In continuous operation the ROI be provided by
tracking.

Let us represent the ROI as a rectangle : (t,l,b,r)

 t - "top" - first row of the ROI.
 l - "left" - first column of the ROI.
 b - "bottom" - last row of the ROI
 r - "right" -last column of the ROI.

(t,l,b,r) can be seen as a bounding box, expressed by opposite corners (l,t), (r,b)
We will compute the moments within this ROI (bounding box).

2.1 Moment Calculations for Blobs

Given a target probability image T(i,j) and a ROI (t,l,b,r):

 Sum:

!

S =
i=l

r

" T
j=t

b

" (i, j)

We can estimate the "confidence" as the average detection probability:

9

 Confidence:

!

CF =
S

(b " t)(r " l)

First moments:

!

x = µi =
1
S i=l

r

" T
j=t

b

" (i, j) # i

!

y = µ j =
1
S i=l

r

" T
j=t

b

" (i, j) # j

 Position is the center of gravity: (µi, µj)

 We will use this as the position of the blob.

Second Moments:

!

" i
2 =
1
S i=l

r

T
j=t

b

(i, j) $ (i %µi)
2

!

" j
2 =
1
S i=l

r

T (i, j) $ (j %µ j)
2

j=t

b

!

" ij
2 =
1
S i=l

r

T
j=t

b

(i, j) $ (i %µi) $ (j %µ j)

These compose a covariance matrix:

!

C =
" i
2 " ij

2

" ij
2 " j

2

$
%

&

'
(

The principle components (λ1, λ2) determine the length and width.
The principle direction determines the orientation of the length.
We can discover these by principle components analysis.

!1!2

!

RCRT =" =
#1
2 0
0 #2

2

$

%
&

'

(
)

where

!

R =
cos(") #sin(")
sin(") cos(")
$

%
&

'

(
)

The length to width ratio, λ1/λ2, is an invariant for shape.
The angle θ is a “Covariant” for orientation.

10

We can use the “eigenvalues”, or characteristic values, λ1, λ2, to define the “width
and height” of the blob:

For example:

 w=λ1, h=λ2

This suggests a "feature vector" for the blob:

!

!
X =

x
y
w
h
"

$

%
%
%
%
% %

&

'

(
(
(
(
((

where x= µi, y = µj, w=λ1, h=λ2 and

!

CF =
S

(b " t)(r " l)

The confidence (CF) can be seen as the “Likelihood” that the model for the blob is
correct.

Tracking allows us to continually update an estimate for the features of the Blob,
even if the blob is temporarily lost to occlusion or noise.

The tracked object is often referred to as a "target". The vector

!

!
X provides the

“model” for the target blob:

Blob model:

!

!
X =

x
y
w
h
"

$

%
%
%
%
% %

&

'

(
(
(
(
((

 Precision:

!

P =

" xx
2 " xy

2 " xw
2 " xh

2 " x#
2

" yx
2 " yy

2 " yw
2 " yh

2 " y#
2

" wx
2 " wy

2 " ww
2 " wh

2 " w#
2

" hx
2 " hy

2 " hw
2 " hh

2 " h#
2

"#x
2 "#y

2 "#w
2 "#h

2 "##
2

$

%

&
&
&
&
&
&

'

(

)
)
)
)
)
)

along with CF. (Confidence)

The covariance P expresses our “uncertainty” about the values of each of the
parameters. This is also called the “Precision”.

Formally, precision is defined as the 2nd moment of the error of the blob model.
Let

!

!
X be the TRUE (unknown) model and

!

! ˆ X be the estimated value. The error,

!

!
E , is

the difference

!

!
E =
!
X "
! ˆ X

and then.

!

P =
!
E
!
E T

11

In most cases, the true value is unknown, and so the precision must be estimated from
the difference between the predicted and observed blobs.

This precision can be initialized to a very small value. Our uncertainty about the
precision will grow over time between observations, due to unobserved motion,
acceleration, etc. We can estimate this growth by the difference between a predicted
blob and its observation. This process will tend to reveal covariance between terms of
the matrix.

If possible it is preferred to estimate P from some known values of

!

!
X or from

knowledge about the sensors and from “experience”.

In the absence of information about the correlation between features in X, the
Covariance can be initialised as a diagonal matrix. The tracking process will review
any correlations.

2.2 Bayesian Tracking

A Bayesian tracker is a recursive estimator, composed of three phases:
Predict, Detect, Update.

Detection can be provided by detecting the blob using color statistics within a target
“Region of Interest” given by a bounding box centered on a previous position. The
size of this box is determined by the estimated size of the blob enlarged by the
uncertainty P.

For this we must predict the new position, detect (observe) the blob, and the update
the estimate.

The following is a “zero-th” order Kalman filter. This is the simplest (almost trivial)
case of a Bayesian tracker. A first order Kalman filters estimates parameters and their
derivatives. The math is more complex but the principles are the same.

2.3 Temporal Prediction

The following describes prediction and estimation (updating).

12

In the absence of any knowledge of movement, we can predict that the blob will be at
the last observed position. This is written as :

!

!
X t

* "
! ˆ X t#1

This is called a "process model". The process model predicts the state vector at time t
given the estimate at time t-∆t:

 Xt

* = argmax{ p(Xt
* | Xt–∆t)}

This can be written as:

!

Xt
* := "(#t) ˆ X t$#t + R

!

Pt
* := "(#t) ˆ P t$#t"(#t)T +Qx

For the simple zeroth order filter

!

"(#t) is the identity matrix. R is the expected
"error" of the process model, due to unmodeled derivatives and noise. The
expectation of the error is almost always 0.

!

R = E{
!
X "
! ˆ X } = 0

Q is the second moment of the process model error.

!

Q = E{(
!
X "
! ˆ X)(
!
X "
! ˆ X)T }

Q captures the loss of precision in the evolution of the process noise.

In a first order Kalman filter this would have been

!

!
X t
*"
!
X t#1 +$t

!
% X t#1

where

!

!
" X t#1 =

d
dt

x
y
w
h
$

%

&

'
'
'
'
' '

(

)

*
*
*
*
* *

=

" x
" y
" w
" h
" $

%

&

'
'
'
'
' '

(

)

*
*
*
*
* *

and ∆t is the time step. But let us keep the explanation simple for now.

Because of unobserved velocity and acceleration, etc, the estimate of the blob grows
more uncertain with time. This is estimated by a prediction error :

!

Q"t

13

!

Ct
* = ˆ C t"#t +Q#t#t 2

The values in

!

Q"t can be "calibrated" by measuring the average error between
predicted and observed blobs from a labeled training sequence, or it can be
"estimated".

We then use the predicted target blob to compute a new predicted ROI for the
detection as described above.

2.4 Detecting the target

For each sensor, a predicted sensor signal Yt

* is generated based on current the
estimated system state Xt

*.

 Yt

* = argmax{p(Yt | Xt
*)}.

We obtain this prediction from the predicted target model.

!

Yt
* = HX

Y Xt
*

In the trivial case of a zeroth order tracker, if

!

!
X and

!

!
Y have the same features than

!

HX
Y is the identity matrix. Else

!

HX
Y can "extract" observed features from a more

complex model.

In the case of blob detection, we can estimate the bounding box using all 5
parameters of

!

Yt
*. In this case

!

HX
Y is the identity matrix.

2.5 Updating the Estimated Blob Parameters

Detection can introduce new errors, such distraction by adjacent target
To minimize such errors, we use a technique from robust estimation.
We weight the detected pixels by the predicted Normal density.

!

ˆ P (i, j) = PT (i, j) "N (i, j; ! µ t
*, Ct

*)

Where PT(i,j) is the new observed probability image at the new time, t.
and

!

(! µ t
*, "t

*) are extracted from

!

!
X t
* and

!

Ct
*

!

!
µ t
* =

xt
*

yt
*

"

$

%

&
' and

!

"t
* =

xx
2 # xy

2

yx
2 # yy

2

$

%
&

'

(
)

14

This is an example of “robust” estimation.

We then estimate the new position and covariance using this product:

First moments:

!

ˆ µ i =
1
S i=l

r

" ˆ P
j=t

b

" (i, j) # i

!

ˆ µ j =
1
S i=l

r

" ˆ P
j=t

b

" (i, j) # j

Second Moments:

!

ˆ " i
2 =

1
S i=l

r

ˆ P
j=t

b

(i, j) $ (i % ˆ µ i)
2

!

ˆ " j
2 =

1
S i=l

r

ˆ P
j=t

b

(i, j) $ (j % ˆ µ j)
2

!

ˆ " ij
2 =

1
S i=l

r

ˆ P
j=t

b

(i, j) $ (i % ˆ µ i) $ (j % ˆ µ j)

which gives:

!

! ˆ µ t =
ˆ µ i
ˆ µ j

"

$

%

&
' and

!

ˆ C t =
ˆ " i

2 ˆ " ij
2

ˆ " ij
2 ˆ " j

2

$
%

&

'
(

From which we can update the new estimate :

!

! ˆ X t

In the Kalman Filter, this is modeled as :

 Xt = argmax{p(Xt | Xt

*, Yt –Yt
*)}

2.6 Managing Lost Targets

Targets can disappear due to occlusion or lost tracking. For stability we accumulate
confidence of targets over time.

 CFt = α CF + (1- α) CFt–∆t +

CFmin is the minimum required average probability per pixel to detect a target.

 If CFt ≤ CFmin then a target is removed.

The weight α determines the decay rate for lost targets.

15

3 The Kalman Filter

Three key steps characterise Bayesian estimation problems (including Kalman
filters).

1) A process model: The process model predicts the state vector at time t given the
estimate at time t-∆t:

 Xt

* = argmax{ p(Xt
* | Xt–∆t)}

2) A sensor model: For each sensor, a predicted sensor signal Yt

* is generated based
on current the estimated system state Xt

*.

 Yt

* = argmax{p(Yt | Xt
*)}.

3) Re-estimation: A new estimated value, Xt is computed based on information
provided by the difference between the predicted and observed sensor values.

 Xt = argmax{p(Xt | Xt

*, Yt –Yt
*)}

The Kalman filter uses a linear dynamic model to provide these estimates. That is, the
process model and sensor models are represented by linear equations. A fixed time
step and previously estimated derivative values are used to estimate the current value
of the state variables. A quadratic form this same dynamic equation is used to predict
the error of the state vector.

A simple zeroth order Kalman filter may be used to track bodies, faces and hands in
video sequences. In the following example, let us assume a line segment target whose
properties are represented by a "state vector" composed of position, size and
orientation (x, y, s, θ) where s is the length (size) of the segment.

A 4x4 covariance matrix is associated with this vector to represent correlations in
errors between parameters. Although prediction does not change the estimated
position, it does enlarge the uncertainties of the position and size of the expected
target. The expected size provides bounds on the sample rate, as we limit the sample
rate so that there are at least 8 pixels across an expected target.

16

3.1 State Vector

The target state vector,

!

ˆ X t is composed of the position, scale and orientation of the
target. For example, this can represent a human face.

!

ˆ X t =

x
y
s
"

$

%
%
%
%

&

'

(
(
(
(

where x, y are the position of the target in pixels
 s is the size or scale of the target, and
 θ is the image plane orientation of the target.

In the case of a first order filter, each of the parameters is accompanied by first
temporal derivative.

!

ˆ X t =

x
˙ x
y
˙ y
s
˙ s
"
˙ "

$

%
%
%
%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
(
(
(

Where the dot indicates temporal derivative.

!

˙ x = "x
"t

The Kalman filter equations are able to use information from the difference of
observed and predicted state to estimate the temporal derivatives.

3.2 Confidence and Uncertainty

The state vector is accompanied by a covariance matrix and a confidence factor. The
confidence factor is an integer between 0, and a maximum confidence value.

 CFt ∈ [0, CFmax]

The position uncertainty (or precision) is the covariance matrix for the state vector

17

!

Pt =

" xx
2 " xy

2 " xs
2 " x#

2

" yx
2 " yy

2 " ys
2 " y#

2

" sx
2 " sy

2 " ss
2 " s#

2

"#x
2 "#y

2 "#s
2 "##

2

$

%

&
&
&
&

'

(

)
)
)
)

For the case of a first order filter, this matrix becomes 8 by 8 with covariance
between all terms.

For each target, at each time, t, the tracker maintains an estimated state

!

ˆ X t as well as
its precision

!

ˆ P t and confidence factor, CFt. Based on a previous state and precision

!

ˆ X t ,

!

ˆ P t and CFt as well as the observation

!

ˆ P t from detection function accompanied by
the observed precision Py, and detection confidence CFy.

!

ˆ X t , ˆ P t ,CFt = F{Xt+"t
* ,Pt+"t

* ,CFt#"t ,Y , Py,CFy}

Given a target at time t-∆t, the prediction equations predict its new position, and
validation gate at time t. The general form of the prediction equations are :

!

Xt
* := "(#t) ˆ X t$#t + R

!

Pt
* := "(#t) ˆ P t$#t"(#t)T +Qx

These equations are a linear estimation of movement based on a Taylor series
approximation.

The term R is a residue that represents higher order (non-estimated) derivatives. This
expected value of this term is zero and thus R is commonly omitted. The second
moment of R represents the uncertainty due to accelerations (and higher order
derivatives). Thus second moments, Q, estimates the loss of precision due to higher
order terms.

 Q = E {R RT}

When included in the prediction, the term Q provides to an additive growth in the
validation gate that is translated to the search region. When a target is detected, this
growth is disappears in the update phase. However if no target is detected, the result
is that the validation gate (and thus the region of interest) grows with each frame until
the target is re-acquired or until the target is declared lost.

For a first order filter, the prediction matrix ϑ(∆t) predicts new values as a function
of the time step and the estimated derivatives.

18

!

"(#t) =

1 #t 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 #t 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 #t 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 #t
0 0 0 0 0 0 0 1

$

%

&
&
&
&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)
)
)
)

In the case of face tracking, we generally assume that face accelerations are too rapid
to be estimated. Thus we may estimate only target position (order 0 tracking) or
position and velocity (order 1 tracking). In this case, the prediction matrix, ϕ(∆t),
becomes a trivial identity matrix:

!

" =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

In this case our prediction equations are reduced to

!

Xt
* = ˆ X t–"t

!

Pt
* = ˆ P t–"t +Qx

A validation gate provides a region of interest (ROI), which serves to limit estimation
to the region where the target can be detected. For face detection, this region of
interest specifies a range of positions and scales and possibly orientations at which
the target may be sought. This greatly accelerates processing by avoiding processing
unnecessary pixels.

 ROI = (xmin, xmax, ymin, ymax, smin, smax, θmin, θmax)

The ROI is computed using the scale to define the width and height of a rectangular
region over which the target will be sought. A ROI based on three standard
deviations reasonable size search region. Such a ROI is defined can be defined as

 xmin = xt

 – 3σxx
 xmax = xt

 + 3σxx
 ymin = yt

 – 3σyy

 ymax = yt
 + 3σyy

 smin = st
 – 3σss

 smax = st
 + 3σss

 smin = st
 – 3σss

 smax = st
 + 3σss

19

 θmin = θt
 – 3σss

 θmax = θt
 + 3σss

This can then be used to drive face detection process using a cascade of linear
classifiers. The resulting face location is noted as the observed location

!

Yt =

x
y
s
"

$

%
%
%
%

&

'

(
(
(
(

The difference between the predicted and observed face locations is known as the
innovation:

 Innovation:

!

(Yt – Xt
*)

For the orientation uncertainty, we propose a fixed value, determined from observing
examples of faces, σθ. This scale becomes the observed uncertainty: Py

!

Py =

" k
2 0 0 0
0 " k

2 0 0
0 0 " k

2 0
0 0 0 "#

2

$

%

&
&
&
&

'

(

)
)
)
)

3.3 State Estimation

This scale is used to update the precision of the face position estimate. The estimated
state vector is updated by using the difference between predicted and estimated
position as an "innovation". In the case of the 0th order filter, the equations are
relatively simple. We first compute a Kalman "Gain matrix:

!

K = Pt
*(Pt

* – Py)
"1

from this we can compute the following update equations:

!

ˆ X t = Xt
* + K(Yt – Xt

*)

!

ˆ P t = Pt
* – KPt

*

The resulting algorithm in the case of a 1st order filter, a transformation matrix,

!

Hx
y

used to project X onto the observed variables Y.

20

3.4 Summary of Kalman filter equations.

1) Process model: Tremporal prediction.

!

Xt
* := "(#t) ˆ X t$#t + R

!

Pt
* := "(#t) ˆ P t$#t"(#t)T +Qx

2) Sensor Model: Observation prediction -

!

HX
Y predicts observed vector from state vector

!

Yt
* = HX

Y Xt
*

!

Py = HX
YPt

*HX
Y

3) Observation and update:

!

K = Pt
*(Pt

* – Py)
"1 (Kalman Gain)

!

ˆ X t = Xt
* + K(Yt – Xt

*)

!

ˆ P t = Pt
* – KPt

*

