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Notation 
x   a variable 
X   a  random variable (unpredictable value)   
V   The number of possible values for X (Can be infinite).   
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

E   An observation. An event.  
Ck   The class k 
k   Class index 
K   Total number of classes 
ωk   The statement (assertion) that E  ∈ Ck 
P(ωk) =P(E ∈Ck) Probability that the observation E is a member of the class k. 
P(X)   Probability density function for X 

  

! 

p(
! 
X )   Probability density function for    

! 

! 
X 

 
 

p(  

! 

! 
X 

 
| ωk)    Probability density for   

! 

! 
X 

  
the class k. ωk  = E  ∈ Ck. 

  

! 

{
! 
X n}  

! 

{yn}  N Training samples labeled with an indicator variable.  
For two class problems, the indicator is:  yn =+1 for target class and yn =-1 for other 
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A Committee of Linear Detection Functions 
 
One of the more original ideas in machine learning the last decade is the discovery of 
a method by to learn a committee of classifiers by boosting.  A boosted committee of 
classifiers can be made arbitrarily good: Adding a new classifier always improves 
performance.  
 
Assume training data composed of N sample observations   

! 

{
! 
X n}  and indicator  

variables, {yn} where 
 yn = +1 for examples of the target pattern (class 1) 
 yn = –1 for all other examples.  
and each sample,   

! 

! 
X n  is a D dimensional vector,  

 
Our goal is to learn a set of linear detection functions  that separates observations of 
the target class from everything else.  
 
A linear detection function is hyperplane is a set of points such that  
 
 

! 

w1x1 +w2x2 + ...+wDxD + d = 0  
 
For convenience, we will use homogeneous coordinates so that:  
 

  

! 

! 
X =

x1
"

xD

1

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 and  

  

! 

! 
W =

w1

"
wD

d

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

 
We will learn a committee of M detection function   

! 

gm (
! 
X )=
! 

W m
T ! X  

Each detection function will vote for the class of an observation:  
We can express this using the function sgn() :  
 

The "vote" for the classifiers is 
  

! 

sgn(
! 

W T
! 
X ) =

1 if 
! 

W T
! 
X " 0

#1 if 
! 

W T
! 
X < 0

$ 
% 
& 

.  

We can sum the votes for M detection function with 
  

! 

sgn(
! 

W m
T ! X )

m=1

M

"  

Thus, for a committee of M detection functions, the decision rule is:  
 

 if  
  

! 

sgn(
! 

W M
T ! X )

m=1

M

"  > 0 Class 1 (True) else class 2 (False).   
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We can bias the classifier to prefer class 1 or class 2 by adding a bias, B to each 
detection function.  
 
For a biased committee of M classifiers, the decision rule is:  
 

 if  
  

! 

sgn(
! 

W m
T ! X + B)

M =1

M

"  > 0 Class 1 (True) else class 2 (False).   

 

Learning a committee of detection functions with Boosting 
 
We can learn a committee of classifiers using boosting.  Boosted learning allows us 
to improve a committee by adding new classifiers 
 
For this we will add weight to the indicators variables {yn} for samples that are 
misclassifed.  Initially, at i=0, all the weights in 

! 

{yn
0}  are 1 or -1.  

 
We can use a variety of different methods to estimate the linear detection functions, 
however it is common to use least squares:  
In this case, the N training samples to compose a matrix X.  
  

   

  

! 

X =

x11 x12 ! x1N
x21 x22 ! x2N
! ! ! "
xD1 xD2 # xDN
1 1 ! 1

" 

# 

$ 
$ 
$ 
$ 
$ $ 

% 

& 

' 
' 
' 
' 
' ' 

  (D+1 rows by N columns) 

 
For each iteration, the indicator variables give a vector 
 

 

  

! 

Y i =

y1
i

y2
i

!
yN
i

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

   (vector of N indicator variables).  

The weight of each indicator variable will be raised for misclassified samples by 
adding sgn(yn). 
 
For each cycle, i, we learn the ith the detection function   

! 

! 
W i  from   

 
   

! 

! 
W i = (XXT )"1X

! 
Y i  
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After each new detector is learned, we re-weight the indicator variables by testing  
the committee for each training sample and giving more weight to improperly 
classified training samples.  
 

FOR n = 1 TO N:   IF  (
  

! 

yn
i " sgn(

! 
W m

T ! X n )
m=1

i

# ) < 0  THEN   

! 

yn
i+1" yn

i + sgn(yn
i )  

By adding sgn(y), negative variables are made more negative, positive more positive. 
We then learn the next classifier using the re-weighted indicator variables.    
 
   

! 

! 
W i+1 = (XXT )"1X

! 
Y i+1  

 
We note that a detection  is True if 
 

 IF 
  

! 

yn " sgn(
! 

W m
T ! X n )

m=1

i

# > 0  THEN True ELSE False.  

 
We can count the number of TRUE and FALSE detections as 
 
 
 

  For n=1 to N: IF 
  

! 

yn " sgn(
! 

W m
T ! X n )

m=1

i

# > 0  THEN T ←T+1 ELSE F←F+1. 
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ROC Curve 
 
As we saw Wednesday, the ROC plots the True Positive Rate (TPR) against False Positive 
Rate (FPR) for a classifier as a function of the global bias B.   
 

 
 
The probability of error for a committee detectors can be computed as  
 

! 

P(Error) =
F
N

=
#FP+#FN

N
 

 
Where N is the number of training samples, and  F is the number of False detections 
within the N training samples.  
 
The Boosting theorem states that adding a new boosted detectors to a committee 
always improves the committee's ROC curve.  We can continue adding classifiers 
until we obtain a desired rate of false positives and false negatives.  
 
However, in general, the improvement provided for each new classifier becomes 
progressively smaller. We can end up with a very very large number of classifiers.  
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Treating each feature as a detection functions.  
 
In some cases it is convenient to use the individual features (properties), xd of   

! 

! 
X  as 

detection functions.   In this case our linear decision surface is simply a Kronecker 
delta:   

 

  

! 

! 
W =

! 
" d =

0
"
1
"
0

# 

$ 

% 
% 
% 
% 
% % 

& 

' 

( 
( 
( 
( 
( ( 

 

 
Thus we can replace least squares estimation with a simple selection process for the 
“best” feature xd as selected by   

! 

! 
W =

! 
" d . 

 
For each iteration, i, the new detection function Wi, is chosen as the feature, d, that 
gives the most correct classifications for the boosted data.  
 

 
  

! 

! 
W i "

! 
# d = arg$max

! 
# d

(yn
i %
! 
# d

T Xn )
n=1

N

&
' 
( 
) 

* 
+ 
,  

 
This feature can be removed from the set of candidate features   

! 

{
! 
" d} after selection.  

 
This is the technique that is used in the Viola-Jones Face detector.  
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Learning a multi-stage cascade of classifiers 
 
We can optimize the computation time by separating the committee into a multi-stage 
cascade of committees 
 
We can use a bias B to construct a committee that is biased to have avoid missing true 
positives (high True Positive Rate) at the cost of accepting many False Positives (high False 
Positive Rate).  
 

  
 
Thus each stage acts as a “filter” to remove true negatives.   
 
We can the construct each stage to eliminate the false positives that passed the 
previous stages.    Later stages are more expensive but are used less often.  
 

 
 
For each stage, S,  we set a target  error rate : (FPRs, FNRs).  
 
We then train the committee using all positive samples from that passed stages from 
1 to S-1.  

 
Each stage acts as a filter, rejecting a large number of easy negative cases, and 
passing the hard cases to the next stage.  The stages become progressively more 
expensive, but are used progressively less often. Globally the computation cost 
decreases dramatically.  
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Bayesian Linear Discriminant Functions 
 
As we saw in earlier lessons, a Bayesian classifier maps a set of features   

! 

! 
X  from an 

Observation, E into a class Ck from a set of K possible Classes.  
 

 

Class(x1,x2, ..., x d)} !̂

x1
x2
...
xd

 
 
Let ωk be the proposition that the event belongs to class k: ωk = E ∈ Ck 

 
 ωk Proposition that event E  ∈ the class k 
 
In order to minimize the number of mistakes, we will maximize the probability that 

! 

"k # E $ Tk  
 

 
  

! 

ˆ " k = arg#max
" k

P("k |
! 
X ){ }  

We will call on two tools for this:  
 
1) Baye's Rule : 

  

! 

P("k |
! 
X ) =

p(
! 
X |"k )
p(
! 
X )

P("k ) 

 

2) Normal Density Functions       
    

! 

p(
! 
X ) = N (

! 
X ; ! µ ,  ") =

1

(2#)
D
2 det(")

1
2

e– 1
2

(
! 
X – ! µ )T "–1 (

! 
X – ! µ )

 

 
The classification function can be decomposed into two parts:  d() and gk(): 
 
   

! 

ˆ " k = d gk

! 
X ( )( )  

 
   

! 

gk

! 
X ( )  :  A discriminant function : RD →  RK 

 d() :  a decision function  RK→ω k   

The discriminant is a vector of functions:  

  

! 

! g (
! 
X ) =

g1(
! 
X )

g2 (
! 
X )
"

gK (
! 
X )

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
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Quadratic discrimination functions can be derived directly from   

! 

p("k |
! 
X )  

 
 

  

! 

p("k |
! 
X ) =

P(
! 
X |"k )p("k )

P(
! 
X )

 

 
To minimize the number of errors, we will choose k such that   
 
 

  

! 

ˆ " k = arg#max
" k

{
P(
! 
X |"k )p("k )

P(
! 
X )

}  

 
but because P(X)  is constant for all k, it is common to use a likelihood function:  
 
 

  

! 

ˆ " k = arg#max
" k

{P(
! 
X |"k )p("k )}    

 
This is called a "Maximum Likelihood" classifier.  
The functions gk() are commonly constructed from the Log of the likelihood:  
 
   

! 

gk (X) = Log{P(
! 
X |"k )P("k )}  

 
as Log is a monotonic function.  
 
For a Gaussian (Normal) density function  
 
     

! 

p(
! 
X |"k ) = N (

! 
X ; ! µ k ,  #k )  

 
 

  

! 

Log(p(
! 
X |"k )) = Log( 1

(2#)
D
2 det($k )

1
2

e–1
2
(
! 
X – ! µ k )

T $k
–1 (
! 
X – ! µ k ) ) 

 
 

  

! 

Log(p(
! 
X |"k )) = – D

2
Log(2#)$ 1

2
Log{Det(%k )} –

1
2
(
! 
X – ! µ k )

T %k
–1(
! 
X – ! µ k ) 

 
We can observe that   

! 

"
D
2
Log(2#) can be ignored because it is constant for all k.   

 
The discrimination function becomes:  
 

  
  

! 

gk (
! 
X ) = – 1

2
Log{det("k )} –

1
2
(
! 
X – ! µ k )

T "k
#1(
! 
X – ! µ k )+ Log{p($k )}  

 
Different families of Bayesian classifiers can be defined by variations of this formula.  
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This becomes more evident if we reduce the equation to the standard (canonical) 
form for a quadic polynomial.  
 
The term   

! 

(
! 
X – ! µ k )

T "k
#1(
! 
X – ! µ k )   can be rewritten as :  

 
   

! 

! 
X T"k

#1 ! X +#2("k
#1 ! µ k )

T ! X ++
! 
µ k

T"k
#1 ! µ k  

 
Demonstration:  
 
   

! 

(
! 
X – ! µ k )

T "k
#1(
! 
X – ! µ k )  =   

! 

! 
X T"k

#1 ! X –
! 
X T"k

#1 ! µ k #
! 
µ k

T"k
#1 ! X + ! µ k

T"k
#1 ! µ k  

 
We note that   

! 

! 
X T"k

#1 ! µ k =
! 
µ k

T"k
#1 ! X  

 
and thus :   

! 

"
! 
X T#k

"1 ! µ k "
! 
µ k

T#k
"1 ! X =   

! 

"(2#k
"1 ! µ k )

T ! X  
 
we define:   

! 

! 
W k = "2#k

"1 ! µ k  
 
to obtain   

! 

"
! 
X T#k

"1 ! µ k "
! 
µ k

T#k
"1 ! X =   

! 

! 
W k

T ! X  

 
Let us also define  

! 

Dk = "
1
2
#k
"1 

 
The remaining terms are constant. Let us defined the constant  
 
 dk = 

  

! 

"
1
2
! 
µ k

T#k
"1 ! µ k " Log{det(#k )}+ Log{p($k )} 

which gives a quadratic polynomial  
 

 

  

! 

gk (
! 
X ) =

! 
X T Dk

! 
X +
! 

W k
T ! X + dk  

 
 
where:     

! 

Dk =

! 

"
1
2
Ck

"1  

       

! 

! 
W k = "2#k

"1 ! µ k  
and    dk = 

  

! 

"
1
2
! 
µ k

T#k
"1 ! µ k " Log{det(#k )}+ Log{p($k )} 

 
A set of K discrimination functions gk(  

! 

! 
X ) partitions the space   

! 

! 
X  into a disjoint set of 

regions with quadratic boundaries.  
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The boundaries between classes are defined by points for which  
 
   

! 

gi(
! 
X ) = gj (

! 
X ) "  gk (

! 
X )#k $ i, j  

 
Thus  the detection function between class i and j can be:    

! 

gij (
! 
X ) = gi (

! 
X )" gj (

! 
X ) 

with the decision rule :  
 
 IF   

! 

gij (
! 
X ) > 0  THEN Ci else Cj 

 
This boundary is a 2nd order (quadric) polynomial in D dimensions. 
 
Under certain conditions, the quadratic discrimination function can be simplified by 
eliminating either the quadratic or the linear term. 
 
For example if   

! 

! 
N s  >>   

! 

! 
N k   then the term Σk will be nearly constant for all k.  

In this case, the discrimination function can be reduced to a linear equation.  
 
   

! 

gk (
! 
X ) =

! 
W k

T ! X + dk  

 
Bayesian Linear Detectors:  
 
Suppose that we have two classes with mean and covariance (  

! 

! 
µ 1, 

! 

"1), and (  

! 

! 
µ 2 , 

! 

"2 ). 
These can be used to define two linear discriminant functions:  
 
Let      

! 

g1(
! 
X ) =

! 
W 1

T ! X + d1 and   

! 

g2 (
! 
X ) =

! 
W 2

T ! X + d2  
 
where :     

! 

! 
W k = "k

#1 ! µ k  
 
and    

! 

dk = "
1
2
(µk

T#k
"1µk )"

1
2
Log{det(#k )}+ Log{p($ k)} 

 
The decision boundary is   
   

! 

g1(
! 
X )" g2 (

! 
X ) = 0  

   

! 

(
! 

W 1
T "
! 

W 2
T )
! 
X + d1 " d2 = 0  

   

! 

("1
#1 ! µ 1 # "2

#1 ! µ 2 )
T X + d1 # d2 = 0  
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The direction is determined by the vector between the center of gravities of the two 
classes, weighted by the inverse of the covariance matrices.  
 
This approach is based on the assumption that the two classes are well modeled by 
Normal density functions. This assumption is not reasonable in many cases.  
If one of the classes is not well modeled as a normal, the results can be unreliable.  
 
In some other cases, the data are so well separated that a large variety of hyperplanes 
can be used. In this case it can be interesting to use a simpler learning method.  


