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Notation 
x   a variable 
X   a  random variable (unpredictable value)   
V   The number of possible values for X (Can be infinite).   
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

E   An observation. An event.  
Ck   The class k 
k   Class index 
K   Total number of classes 
ωk   The statement (assertion) that E  ∈ Ck 
P(ωk) =P(E ∈Ck) Probability that the observation E is a member of the class k. 
Nk   Number of examples for the class k.   
N   Total number of examples.  

   

! 

N = Nk
k=1

K

"  

P(X)   Probability density function for X 

  

! 

p(
! 
X )   Probability density function for    

! 

! 
X 

 
 

p(  

! 

! 
X 

 
| ωk)    Probability density for   

! 

! 
X 

  
the class k. ωk  = E  ∈ Ck. 

  

! 

{
! 
X n}  

! 

{yn}  N Training samples labeled with an indicator variable.  
For two class problems, the indicator is:  yn =+1 for target class and yn =-1 for other 
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Linear Classifiers as Pattern Detectors 
 
Linear classifiers are widely used to define pattern “detectors”.  This is used in 
computer vision, for example to detect faces, road signs, publicity logos, or other 
patterns of interest.  
 
A pattern detector can be seen as a classifier with   K=2.  
Class k=1:  The target pattern.  
Class k=2:   Everything else.  
 
The pattern detector is learned as a detection function g(X) also known as a 
discriminant, followed by a decision rule. The detection function is learned from a set 
of training data composed of N sample observations  

! 

{
! 
X n}  where each sample 

observation is labeled with an indicator  variable  
 yn = +1 for examples of the target pattern (class 1) 
 yn = –1 for all other examples.  
 
In todays lesson we will study linear detection functions (linear discriminants).   
 
Linear detection function is a  hyper-plane  in the D dimensional space,   

! 

! 
X , that 

separates observations of the target class from everything else.  
 
A hyperplane is a set of points such that  
 
 

! 

w1x1 +w2x2 + ...+wDxD + d = 0  
 
This can be written:    

! 

! 
W T
! 
X + d = 0 

The decision rule is  IF   

! 

! 
W T
! 
X + d > 0 THEN E ∈ C1 else E ∉ C1 

 
We can add an additional bias term, B, that can act as an adjustable gain that sets the 
sensitivity of the detector. The bias term allows us to trade False positives for False 
negatives.  

Ax1  + Bx2  + C  = 0

Ax1  + Bx2  + C  > 0

Ax1  + Bx2  + C  < 0

Class 1

Class 2
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Note that  

  

! 

! 
W =

w1

w2

"
wD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

  is the normal to the hyperplane.   

 
When   

! 

! 
W  is normalized to unit length, ||  

! 

! 
W || = 1, then 

 
    

! 

d = "
! 

W T
! 
X  is the perpendicular distance to the origin for a hyperplane that 

includes the point   

! 

! 
X   

 
 if   

! 

! 
W "1 then we can normalize with 

  

! 

! 
" W =

! 
W 
||
! 

W ||
 and 

  

! 

" d =
d

||
! 

W ||
 

 
In many cases it is convenient to treat d as the "0th" term of  W, so that  
 

  

! 

! 
X =

1
x1
"

xD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 and  

  

! 

! 
W =

d
w1

"
wD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

 
This is an form "homogeneous equation".  
In this case  our hyperplane detection function becomes:  
 
    

! 

g(
! 
X ) =

! 
W T
! 
X  

 
A variety of techniques exist to estimate the plane.  
Popular techniques include 
 1) Least Squares estimation 
 2) Perceptrons 
 3) Bayesian Discriminant functions 
 4) Fisher Discriminant analysis.  
 
The best choice can depend on the nature of the data as well as the way in which the 
linear detection function is used. In many cases a fast sub-optimal technique may be 
preferred to a more expensive optimal technique.   
 
To better understand we need a tool to explore the trade-off between making false 
detections (false positives) and missed detections (false negatives).  The Receiver 
Operating Characteristic (ROC) provides such a tool 



Linear Discriminate Functions Lesson 16 

 16-5 

ROC Curves 
 
Two-class linear classifiers have long been used for signal detection problems in 
communications.  In the case of radio communications, the noise is typically additive, 
Gaussian and independent of the signal, and the Bayesian Classifier reduces to a 
linear classifier.  
 
Historically two class linear classifiers have been used to demonstrate optimality for 
some signal detection methods. The quality metric that is used is the Receiver 
Operating Characteristic (ROC) curve. This curve can be used to describe or compare 
any method for signal or pattern detection.  
 
The ROC curve is generated by adding a variable Bias term to a linear discriminant 
 
   

! 

g(
! 
X ) =

" 
W T "

! 
X + B  

  
The bias term, B,  is swept through a range of values.  
Changing B changes the ratio of true positive detection to false positives.  
The resulting curve is called a Receiver Operating Characteristics (ROC) curve.  
 
The ROC plots True Positive Rate (TPR) against False Positive Rate (FNR) as a 
function of B for the training data   

! 

{
! 
X m} , 

! 

{ym}. 
 
Les us define a detection as either Positive (P) or Negative (N) 
 
 IF   

! 

! 
W T
! 
X m + B > 0  THEN P else N 

 
The detection can be TRUE (T) or FALSE (F) depending on the indicator ym 

 
 IF   

! 

ym " (
! 

W T
! 
X m + B) > 0  THEN T else F 

 
Combining these two values, any detection can be a True Positive (TP), False 
Positive (FP), True Negative (TN) or False Negative (FN).  
 
For the M samples of the training data   

! 

{
! 
X m} , 

! 

{ym} let us define:  
#P as the number of Positives, 
#N as the number of Negatives, 
#T as the number of True and  
#F as the number of False,  
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From this we can define:  
 #TP as the number of True Positives,  
 #FP as the number of False Positives,  
 #TN as the number of True Negative,  
 #FN as the number of False Negatives.  
 
Note that #P = #TP + #FN 
And #N = #FP+ #TN 
 
The True Positive Rate (TPR) is 

! 

TPR =
#TP
#P

=
#TP

#TP+#FN
 

 
The False Positive Rate (FPR) is 

! 

FPR =
#FP
#N

=
#FP

#FP+#TN
 

 
The ROC plots the TPR against the FPR as a bias B is swept through a range of 
values.  

     
When B is large, all the samples are detected as N, and both the TPR and FPR are 0.  
As B decreases both the TPR and FPR increase. Normally TPR is larger than FPR for 
any B.  If TPR and FPR are equal, then the detector is no better than chance.  
 
The more the curve approaches the upper left corner the better the detector.  
The ROC is a powerful descriptor for the “goodness” of a linear classifier.  
For a target class C1  

• a Positive (P) detection is the decision that E ∈ C1 

• a Negative (N) detection is the decision that  E ∈ C2 

 
    

! 

ym " (
! 

W T
! 
X m + B) > 0  

 T  F 
P True Positive (TP) False Positive (FP)   

! 

! 
W T
! 
X m + B > 0  

N False Negative (FN) True Negative (TN) 
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Least squares estimation of a hyperplane 
 
A popular method for estimating a hyperplane is to compute a least-squares estimate 
using matrix algebra.  Least squares estimation is a fast sub-optimal method that 
provides a direct, closed form solution to estimate a linear discriminant function  
from a set of labeled training data.  
 
Assume a training set of N observations  

! 

{
! 
X n}  where each observation is labeled with 

an indicator  variable  
 yn = +1 for examples of the target pattern (class 1) 
 yn = –1 for all other examples (class 2) 
 
Assume a notation in which the constant d is included as a "0th" term in X and W.  
 

  

! 

! 
X =

1
x1
"

xD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 and  

  

! 

! 
W =

d
w1

"
wD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

 
The detection function is     

! 

g(
! 
X ) =

! 
W T
! 
X  

 
We seek the "best"   

! 

! 
W . This can be determined by minimizing a "Loss" function that 

can be defined as the Square of the error.  
 

 
  

! 

L( ˆ W ) = (yn "
! 
X n

T

n=1

N

# ˆ W )2  

 
To build or function, we will use the M training samples to compose a matrix X and a 
vector Y.  
  

   

  

! 

X =

1 1 ! 1
x11 x12 ! x1N
x21 x22 ! x2N
! ! " #
xD1 xD2 ! xDN

" 

# 

$ 
$ 
$ 
$ 
$ $ 

% 

& 

' 
' 
' 
' 
' ' 

  (D+1 rows by N columns) 
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! 

Y =

y1
y2
!
yN

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

   (N coefficients).  

 
We can factor the loss function to obtain:    L(

! 

ˆ W ) = (Y – XΤW)Τ (Y – XΤW)   

 
To minimize the loss function, we calculate the derivative and solve for W when the 
derivative is 0.  
  
 

  

! 

"L(
! 

W )
"
! 

W 
= –2 XY + 2 X X Τ

  

! 

! 
W  = 0 

 
which gives   XY =  X XΤ   

! 

! 
W 

  
   
and thus   

  

! 

! 
W  = ( XXΤ )–1  X Y 

 
An unknown event   

! 

! 
X  can then be classified as  

 
 if    

! 

! 
W T
! 
X   > 0  then 

! 

ˆ " 1 else 

! 

ˆ " 2   
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Perceptrons 
 
A perceptron is an incremental learning algorithm for linear classifiers invented by 
Frank Rosenblatt in 1956.  The perceptron is an on-line learning method in which a 
linear classifier is improved by its own errors.   
 
A perceptron learns a set of possible hyper-planes to separate training samples.  
When the training data are perfectly separated the data is said to be "separable".  
Otherwise, the data is said to be non-separable.  
 
The "margin", γ,  is the smallest separation between the two classes.  
   
When are the training samples are separable, the algorithm uses the errors to update a 
plane until there are no more errors.  When the training data is non-separable, the 
method may not converge, and must be stopped after a certain number of iterations.  
The learning can be incremental. New training samples can be used to update the 
perceptron.  
 
The perceptron learns from a training samples   

! 

{
! 
X n}  with indicator variables 

! 

{yn}. 
Note that for all correctly classified examples :  
 
    

! 

yn " (
! 

W T
" 
X n + d) > 0    

 
The algorithm will apply a learning gain,  α,  to accelerate learning.  
  
Algorithm:  
   

! 

! 
W o  ← 0; do ← 0; i = 0;  

 R ← max { ||  

! 

! 
X n || } 

  WHILE update DO 
  update ← FALSE; 
  FOR n = 1 TO  N  DO  
   IF    

! 

yn " (
! 

W i
T " X n + di ) # 0  THEN  

    update ← TRUE 
      

! 

! 
W i+1"

! 
W i +# $ ym $

! 
X m  

    

! 

di+1" di +# $ ym $ R
2  

    i ← i + 1  
   END IF 
  END FOR 
 END WHILE.  
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After each stage the margin, γn,  for each sample, n, is  
 
   

! 

"n = yn # (
! 

W i
T " X n + di ) 

 
The coefficients must be normalized to compute the margin.  
 
 

  

! 

" 
! 

W i =

! 
W i
||
! 

W i ||
  

  

! 

" d i =
di

||
! 

W i ||
 

 
The decision rule then becomes:  
 
   if    

! 

sgn(
! 

W i
T ! X + di )) > 0  then 

! 

ˆ " 1 else 

! 

ˆ " 2   
 
The quality of a perceptron is given by the histogram of its margins, h(γn) 
If the data is not linearly separable, then the Perceptron will not converge, and 
continue to loop.  



Linear Discriminate Functions Lesson 16 

 16-11 

Bayesian Linear Discriminant Functions 
 
As we saw in earlier lessons, a Bayesian classifier maps a set of features   

! 

! 
X  from an 

Observation, E into a class Ck from a set of K possible Classes.  
 

 

Class(x1,x2, ..., x d)} !̂

x1
x2
...
xd

 
 
Let ωk be the proposition that the event belongs to class k: ωk = E ∈ Ck 

 
 ωk Proposition that event E  ∈ the class k 
 
In order to minimize the number of mistakes, we will maximize the probability that 

! 

"k # E $ Tk  
 

 
  

! 

ˆ " k = arg#max
" k

P("k |
! 
X ){ }  

We will call on two tools for this:  
 
1) Baye's Rule : 

  

! 

P("k |
! 
X ) =

p(
! 
X |"k )
p(
! 
X )

P("k ) 

 

2) Normal Density Functions       
    

! 

p(
! 
X ) = N (

! 
X ; ! µ ,  ") =

1

(2#)
D
2 det(")

1
2

e– 1
2

(
! 
X – ! µ )T "–1 (

! 
X – ! µ )

 

 
The classification function can be decomposed into two parts:  d() and gk(): 
 
   

! 

ˆ " k = d gk

! 
X ( )( )  

 
   

! 

gk

! 
X ( )  :  A discriminant function : RD →  RK 

 d() :  a decision function  RK→ω k   

The discriminant is a vector of functions:  

  

! 

! g (
! 
X ) =

g1(
! 
X )

g2 (
! 
X )
"

gK (
! 
X )

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
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Quadratic discrimination functions can be derived directly from   

! 

p("k |
! 
X )  

 
 

  

! 

p("k |
! 
X ) =

P(
! 
X |"k )p("k )

P(
! 
X )

 

 
To minimize the number of errors, we will choose k such that   
 
 

  

! 

ˆ " k = arg#max
" k

{
P(
! 
X |"k )p("k )

P(
! 
X )

}  

 
but because P(X)  is constant for all k, it is common to use a likelihood function:  
 
 

  

! 

ˆ " k = arg#max
" k

{P(
! 
X |"k )p("k )}    

 
This is called a "Maximum Likelihood" classifier.  
The functions gk() are commonly constructed from the Log of the likelihood:  
 
   

! 

gk (X) = Log{P(
! 
X |"k )P("k )}  

 
as Log is a monotonic function.  
 
For a Gaussian (Normal) density function  
 
     

! 

p(
! 
X |"k ) = N (

! 
X ; ! µ k ,  #k )  

 
 

  

! 

Log(p(
! 
X |"k )) = Log( 1

(2#)
D
2 det($k )

1
2

e–1
2
(
! 
X – ! µ k )

T $k
–1 (
! 
X – ! µ k ) ) 

 
 

  

! 

Log(p(
! 
X |"k )) = – D

2
Log(2#)$ 1

2
Log{Det(%k )} –

1
2
(
! 
X – ! µ k )

T %k
–1(
! 
X – ! µ k ) 

 
We can observe that   

! 

"
D
2
Log(2#) can be ignored because it is constant for all k.   

 
The discrimination function becomes:  
 

  
  

! 

gk (
! 
X ) = – 1

2
Log{det("k )} –

1
2
(
! 
X – ! µ k )

T "k
#1(
! 
X – ! µ k )+ Log{p($k )}  

 
Different families of Bayesian classifiers can be defined by variations of this formula.  
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This becomes more evident if we reduce the equation to a quadratic polynomial.  
This function can be reduced to a standard (canonical) form.  
Let us start with the term   

! 

(
! 
X – ! µ k )

T "k
#1(
! 
X – ! µ k ) .  

 
This can be rewritten as :  
 
   

! 

(
! 
X – ! µ k )

T "k
#1(
! 
X – ! µ k )  =   

! 

! 
X T"k

#1 ! X –
! 
X T"k

#1 ! µ k #
! 
µ k

T"k
#1 ! X + ! µ k

T"k
#1 ! µ k  

 
We note that   

! 

! 
X T"k

#1 ! µ k =
! 
µ k

T"k
#1 ! X  

and thus :   

! 

"
! 
X T#k

"1 ! µ k "
! 
µ k

T#k
"1 ! X =   

! 

"(2#k
"1 ! µ k )

T ! X  
 
we define:   

! 

! 
W k = "2#k

"1 ! µ k  
to obtain   

! 

"
! 
X T#k

"1 ! µ k "
! 
µ k

T#k
"1 ! X =   

! 

! 
W k

T ! X  

 
Let us also define  

! 

Dk = "
1
2
#k
"1 

 
The remaining terms are constant. Let us defined the constant  
 
 dk = 

  

! 

"
1
2
! 
µ k

T#k
"1 ! µ k " Log{det(#k )}+ Log{p($k )} 

which gives a quadratic polynomial  
 

 

  

! 

gk (
! 
X ) =

! 
X T Dk

! 
X +
! 

W k
T ! X + dk  

 
 
where:     

! 

Dk =

! 

"
1
2
Ck

"1  

       

! 

! 
W k = "2#k

"1 ! µ k  
and    dk = 

  

! 

"
1
2
! 
µ k

T#k
"1 ! µ k " Log{det(#k )}+ Log{p($k )} 

 
A set of K discrimination functions gk(  

! 

! 
X ) partitions the space   

! 

! 
X  into a disjoint set of 

regions with quadratic boundaries. The boundaries are the functions    

! 

gi(
! 
X )" gj (

! 
X ) = 0  

The boundaries are defined by points for which  
 
   

! 

gi(
! 
X ) = gj (

! 
X ) "  gk (

! 
X )#k $ i, j  

 
Under certain conditions, the quadratic discrimination function can be simplified by 
eliminating either the quadratic or the linear term. 
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For example if   

! 

! 
N s  >>   

! 

! 
N k   then the term Σk will be nearly constant for all k.  

In this case, the discrimination function can be reduced to a linear equation.  
 
   

! 

gk (
! 
X ) =

! 
W k

T ! X + dk  

 
Bayesian Linear Detectors:  
 
Suppose that we have two classes with mean and covariance (  

! 

! 
µ 1, 

! 

"1), and (  

! 

! 
µ 2 , 

! 

"2 ). 
These can be used to define two linear discriminant functions:  
 
Let      

! 

g1(
! 
X ) =

! 
W 1

T ! X + d1 and   

! 

g2 (
! 
X ) =

! 
W 2

T ! X + d2  
 
where :     

! 

! 
W k = "k

#1 ! µ k  
 
and    

! 

dk = "
1
2
(µk

T#k
"1µk )"

1
2
Log{det(#k )}+ Log{p($ k)} 

 
The decision boundary is   
   

! 

g1(
! 
X )" g2 (

! 
X ) = 0  

   

! 

(
! 

W 1
T "
! 

W 2
T )
! 
X + d1 " d2 = 0  

   

! 

("1
#1 ! µ 1 # "2

#1 ! µ 2 )
T X + d1 # d2 = 0  

 

 
The direction is determined by the vector between the center of gravities of the two 
classes, weighted by the inverse of the covariance matrices.  
 
This approach is based on the assumption that the two classes are well modeled by 
Normal density functions. This assumption is not reasonable in many cases.  
If one of the classes is not well modeled as a normal, the results can be unreliable.  
 
In some other cases, the data are so well separated that a large variety of hyperplanes 
can be used. In this case it can be interesting to use a simpler learning method.  


