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For two proposition A and B,  Bayes Rule tells us that  
 
  P(A | B) P(B) =P(A, B) = P(B | A) P(B) 
 
Bibliography :  E. T.  Jaynes, Probability Theory: The Logic Of Science,  Cambridge 
University Press, 2003 (available on the course web site).  
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Plausible Reasoning 
 
What is truth?   
 
Logical truth:  Logical consistency with a set of axioms and postulates.  
 
Plausibility.  A state of knowledge of the world. Plausible truth concerns the ability to 
predict and explain the world. 
 
In the real world, new information is continually arriving.  Plausible reasoning 
assimilates new information as it arrives.  
 
"Plausibility" represents the degree to which a statement can  be believed.  This can 
be represented by likelihood or  probability.  
 
Plausible reasoning seeks to validate or invalidate hypotheses using uncertain or 
unreliable information.  
Plausible reasoning can be used to reason about the truth of single hypothesis (H or 
¬H) or choose from a number of competing hypotheses {Hi}.  
 
Bayes Rule gives us a technique for using evidence to support hypotheses. 
Let H be an hypothesis and let E be evidence for the hypotheses.  
 
Then Bayes rule tells us 
 
 P(H, E) = P(H | E ) P(E ) = P(E | H) P(H ) 
 
so that   

! 

P(H | E) =
P(E | H )P(H )

P(E)
 

 
We would like to apply this technique recursively, as new data arrives and use this to 
reason over multiple hypotheses:  
 
Assume that we have K hypotheses, Hk and we seek to accumulate evidence to select 
the most likely hypothesis.   For multiple evidence we could write:  
 
 

! 

P(Hk | E1,...,Ei ) =
P(E1,...,Ei | Hk )P(Hk )

P(E1,...,Ei )
 

 
The problem is how to incrementally estimate P(E1, ..., Ei) and P(E1, ..., Ei | Hk) 
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To simplify the notation, let us define Si={E1,..., Ei} as a body of previous composed 
of i observations, and Ei+1 as a new observation.   

 
Z-1 is a memory buffer 

 
For each new observation, Ei+1  The problem is how to estimate  

! 

P(Hk | Ei+1,Si ) 
using the previous evidence S.   This can be written:  
 
 

! 

P(Hk | Ei+1,Si ) =
P(Ei+1,Si | Hk )P(Hk )

P(Ei+1,Si )
 

 
The index, i, and the accumulated evidence Si are then updated:  
 
 S i+1← Si ∪ Ei ;    i←i+1; 
 
For a recursive formulation we need to factor this equation into the estimate at the 
previous time step, i, and an update formula, u(Ei+1, Si, Hk): 
 
 

! 

P(Hk | Ei+1,Si ) = u(Ei+1,Si ,Hk ) "P(Hk | Si ) 
 
To determine u(Ei+1, Si, Hk) we will follow the development as laid out by E. T. 
Jaynes.   Jaynes derives a "product rule" that says  
 
 P(A, B | C) =  P(A | B, C) P(B | C) = P(B |A, C)P(A | C) 
 
Applying this rule to evidence reasoning we see that  
 
 

! 

P(E,H | S) = P(E | H ,S)P(H | S) = P(H | E,S)P(E | S)  
 
From this we can derive update formula as:  
 

 

! 

P(Hk | Ei+1,Si ) =
P(Ei+1 | Hk ,Si )
P(Ei+1 | Si )

P(Hk | Si ) 
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The Plausible Reasoning System of E. T.  Jaynes  
 
E. T. Jaynes derives a consistent theory for Plausible Reasoning from Evidence by 
starting from a set of desired criteria.  He starts by defining 3 terms:  
 
 H = Some hypothesis to be tested 
 S = Prior (background) Information (Jaynes calls this B for Background) 
 E = Evidence, A newly provided observation. (Jaynes calls this D for Data) 
 
Prior information is NOT the same as "a-priori" information.  Prior information 
informs the plausibility of H before (prior to) including the new data. S can be used 
to represent "experience" with similar problems. For example, when sampling balls 
from an urn, S can represent the results of all previous samples.  
 
Jaynes argues that until E is assimilated into the reasoning it is only raw data. The 
degree that E acts as evidence for H depends on the plausibility of E and the 
plausibility of H.  
 
With this approach we may reason about the truth of single hypothesis (H or ¬H) or 
choose from a number of competing hypotheses {Hk}. 
 
Jayne's desired criteria for a system of Plausible Reasoning:  
 
Jaynes derives his system to meet a set of desired criteria  
 
1) Degrees of plausibility are represented by real numbers, where a greater number 
represents more plausible.  
2) The system should have qualitative correspondence with (human) common sense.  
3) The solution should be consistent:  If a conclusion can be reached by more than 
one way (sequence of inferences) then all ways must lead to the same result.  
4)  All available evidence must be included. Evidence can not be arbitrarily ignored. 
(reasoning must be non-ideological - no cherry picking as is popular with certain 
politicians and salesemen).  
5) Equivalent states of knowledge should be represented by equivalent plausibility.  
 
1, 2, and 3 are "structural" criteria for the system. 4, and 5 are "interface" conditions.  
 
For example, consider rule 4 - Politicians, salesman and propagandists tend to cite 
favorable evidence and ignore contradictory evidence. Jaynes shows that this leads to 
errors.   
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Rule 5 leads to a formal requirement that in the absence of any prior knowledge or 
evidence, all hypotheses are equally plausible, because they are interchangeable. For 
N equally plausible hypotheses:     

! 

"k :P(Hk ) =
1
K

 

 
From these desired properties, Jaynes derives two rules for plausible reasoning: The 
Product Rule and the Sum Rule.  
 
Notation.  
 
Let A, B and C be statements.     
Let A, B = A∧B represent the conjunction of A and B. Both A and B are true.  
Let A+B = A∨B represent the disjunction of A and B. A or B (or both) are true.  
Let ¬A represent Negation.  A is NOT true.  
P(A) is the plausibility of A.  P(A) > P(B) means that A is more plausible than B.  
Conditional relation:  A | B :  A given B.   
So P(A|B) is the plausibility of A given B. 
 
For example:   P(A | B, C)   :  the plausibility of A given B and C.  
P(A+B | C, D) :  the plausibility of A or B given C and D.  
 
P( A | C) > P( B | C) says that given that C is true, A is more plausible than B.  
 
We also note that  P( A | B) + P( ¬A | B) = 1. 
 
Jaynes uses his desired properties to derive two fundamental rules:  
 

The Sum Rule 
 
  P(A+B | C) = P(A | C) + P( B | C) - P(A,B | C) 

 
The Product Rule 
 
  P(A, B | C) =  P(A | B, C) P(B | C) = P(B |A, C) P(A | C). 
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For new evidence E, and previous evidence S:  
The product rule tells us:  
 
 

! 

P(E,H | S) = P(E | H ,S)P(H | S) = P(H | E,S)P(E | S)  
 
From this we can derive  
 

   

! 

P(H | E,S) =
P(E | H ,S)
P(E | S)

P(H | S) 

 
In statistics, the term 

! 

P(H | E,S) is called the posterior probability. Posterior does 
NOT mean "later" but means "after assimilation of the E".  
 
the term 

! 

L(E) =
P(E | H ,S)
P(E | S)

 is the "likelihood" of E given H and S. 

 
Two cases can be considered (1) reasoning about a single hypothesis, and (2) 
reasoning over multiple hypotheses.  
 

Single Hypothesis - the binary case.  
 
The binary case is a realistic and valuable model for many practical problems.  
In this case we seek to choose between H or ¬H given E and S.  
 
The product rule tells us that   

! 

P(H | E,S) = P(H | S) P(E | H ,S)
P(E | S)

 

 
but also 

! 

P(¬H | E,S) = P(¬H | S) P(E |¬H ,S)
P(E | S)

 

 
If we take the ratio we obtain: 
 
 

! 

P(H | E,S)
P(¬H | E,S)

=
P(H | S)
P(¬H | S)

P(E | H ,S)
P(E |¬H ,S)

 

 
This is known as the "odds" of the hypothesis (côte en Français) :  
 
 

! 

O(H | E,S) =
P(H | E,S)
P(¬H | E,S)
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Odds are widely used in gambling to express the estimated frequency of occurrence 
of an outcome compared to an alternative. 
 
  From the product rule we can derive:  
 
 

! 

O(H | E,S) =O(H | S) P(E | H ,S)
P(E |¬H ,S)

 

 
That is, the posteriori odds are equal to the prior odds multiplied by the likelihood 
ratio.  
 
It is convenient to convert the likelihood ratio to a logarithmic scale so that we can 
add likelihood as evidence is obtained.  
Jaynes defines this as a function e() that he refers to as evidence for the hypothesis 
 
 

! 

e(H | E,S) "10Log10O(H | E,S) 
 
so that  

! 

e(H | E,S) = e(H | S)+10Log10
P(E | H ,S)
P(E |¬H ,S)
" 

# 
$ 

% 

& 
'  

 
The use of base 10 allows us express the effect of new evidence in "decibels", a 
commonly used engineering convention for exponential scales.  
 
When the our "data" is actually several different observations:  
 
 E = E1, E2, E3… 
 
Then the evidence accumulates as a sum of log likelihoods:  
 

! 

e(H | DB) = e(H | B)+10Log10
P(E1 | H ,S)
P(E1 |¬H ,S)
" 

# 
$ 

% 

& 
' +10Log10

P(E2 | H ,S)
P(E2 |¬H ,S)
" 

# 
$ 

% 

& 
' + ... 

 
and for independent observations i=1, 2, … 
 

 

! 

e(H | E,S) = e(H | S)+10 Log10
P(Ei | H ,S)
P(Ei |¬H ,S)
" 

# 
$ 

% 

& 
' 

i
(  

 
In most cases, the probability of getting E2 is not influenced by knowledge of E1.  
 
 

! 

P(E2 | E1,H ,S) = P(E2 | H ,S)  
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We say that E1 and E2 are "independent".  Note that this says nothing about their 
causal relation, but only that they are logically independent with respect to our 
problem. For two logically related data, if we know one, then we know the other, 
whether or not they are causal.  
 
The utility of log likelihood expressed in base 10 can be seen from the following 
table comparing log likelihood, odds and probabilities.  
 
 e O p 
 0 1:1 1/2 
 3 2:1 2/3 
 6 4:1 4/5 
 10 10:1 10/11 
 20 100:1 100/101 
 30 1000:1 0.999 
 40 104:1 0.9999 
 -e 1/O 1-p 
 
 
The scale of e() is measured in dB (decibels) and can easily accommodate 
exponential numbers.  
 
Jaynes observes the 1db was defined as the smallest discernable change in sound 
intensity.  Interestingly, 1dB seems to be the smallest discernable change in 
likelihood given new evidence.  
 
The binary (single hypothesis) case is simple and provides an elegant solution. 
Unfortunately, it is NOT extensible to multiple hypotheses.  
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Multiple Hypotheses.  
 
In the case of multiple hypotheses, we have K mutually independent hypotheses, Hk.  
We assume that one of these is correct, and all others are false.  Thus 
 
 

! 

P(Hk | S)
k
" =1 

 
Given a new observation, E,  
 
 

! 

P( " H k | E,S)#
P(E | H k ,S)

P(E | S)
P(H k | S) 

 
We note that for this to work. 

! 

P(E | S) = P(E | " H k ,S)
k
#  

Depending on how we compute 

! 

P(E | " H k ,S) and 

! 

P(E | S) this may not be true. 
 
Alternatively, we can note that because the term P(E|S) is common to all hypotheses, 
it can be ignored. We can then define the relative Likelihood for each hypothesis  as   
 
 

! 

L( " H k | E,S) = P(E | H k ,S)P(H k | S) 
 
The difference is that likelihoods do not sum to 1.  
The relative likelihoods can be normalized to provide probabilities by dividing by the 
sum of likelihoods. 
 
 

! 

P( " H k | E,S) =
L( " H k | E,S)

L( " H k | E,S)
k
#

 

 
This is technique is used in found in many software tools for Bayesian reasoning. 
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Example: Classifying text from word frequency.  
 
For our example, we can use Jayne's plausible reasoning to recursively recognize 
classes of text from the frequency of words. 
 
Assume that we have k classes of text, Ck and that we have samples of Nk words for 
each class, 

! 

wn
k{ }.  We can use word frequency to estimate the probability of a word 

given a class of text. Allocate K hash tables, hk() and for each class of words count 
the word frequency in the samples 

! 

wn
k{ }.  

 
 ∀w∈

! 

wn
k{ }: hk(w) ←hk(w) + 1 

 
Then 

! 

P(w |Ck ) =
1
Nk

hk (w) and  

! 

P(w) =
1
N
h(w) where 

! 

h(w) = hk (w)
k
"  and 

! 

N = Nk
k
"  

 
we can use the number of words in the training corpus to estimate 

! 

P(Hk ) =
Nk

N
  

A "probe" is a sample of text to be classified, 

! 

w{ } 
 
We can use word counts to recursively estimate the class for the probe.  
 
At i=0 we observe the first word of the probe,   E1 = w1 .  
Initially S0={} is empty, so that  
 
 

! 

P(Hk | E1) =
hk (w1)
h(w1)

 

  
We then update the accumulated evidence, Si,  and index i.   S1←w1 ;    i← 1; 
 
For word 2, and for the following words:  
 
 

! 

L(Hk |wi+1,Si ) = P(wi+1 | Si ,Hk )P(Hk | Si )  
 
But how do we compute :  

! 

P(wi+1 | Si ,Hk )? 
  
We can incrementally compute a new hash hs(w) for each new word in the probe 
 
  hs(wi+1) ←hs(w i+1i) + 1 and  i←i+1. Note that at each cycle   Ns = i 
 
For 

! 

P(wi+1 | Si ,Hk ) we combine the hash from the probe with the hash for each class.  
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! 

P(wi+1 | Si ,Hk ) =
1

(Nk + i)
(hk (wi+1)+ hp (wi+1)) 

 
we then obtain:  
 
 

! 

L(Hk |wi+1,Si ) = P(wi+1 | Si ,Hk )P(Hk | Si )  
 
To return the set of likelihoods to a probability we normalize by dividing by the sum 
of likelihoods. 
 
 

! 

P( " H k |wi+1,Si ) =
L( " H k |wi+1,Si )

L( " H k |wi+1,Si )
k
#

 

 
There remains a problem.  What happens if we encounter a rare word. If the word has 
never been encountered in any corpus, then the recursive update is:  
 
 

! 

P(wi+1 | Si ,Hk ) = 0  
 
This can be detected and the word can be rejected. However, if the word was in one 
of the training corpuses, but not the others, all other word classes will have their 
probability set to 0.  Forever.  This can cause an error.  One solution is to replace 0 by 
the probability that the word is in the class Ck, but that it was not in the training 
corpus, 

! 

Wn
k{ }. We can estimate this as  

 
for example:  we can estimate  

! 

P((w " Ck )# (w $ {wn
k )) =

1
Nk

 

This is equivalent a minimum value of Pmin for 

! 

P(w | Hk ).  
 
 if P( w | Hk) < Pmin  then P(w | Hk)= Pmin.  
 
An alternative is to assimilate the new word into the probe before updating the 
probability.  
   hs(wi+1) ←hs(wi+1) + 1 and  Ns = i+1 
 
This serves to assure that the first time the word is encountered, the update factor is 

! 

1
Nk + i

.  


