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Bayesian Reasoning and Recognition 
 
Baye's rule provides a unifying framework for pattern recognition and for reasoning 
under uncertainty. An important property is that this approach provides a framework 
for machine learning.   
 
"Bayesian" refers to the 18th century mathematician and theologian Thomas Bayes 
(1702–1761), who provided the first mathematical treatment of a non-trivial problem 
of Bayesian inference.  Bayesian inference was made popular by Simon Laplace in 
the early 19th century.  
 
The rules of Bayesian inference can be interpreted as an extension of logic. Many 
modern machine learning methods are based on Bayesian principles.   
 
Bayes rule is expressed in terms of relative probabilities. Thus we need to review the 
definition of probability to provide a solid foundation.   
 

Probability 
 
There are two possible definitions of probability that we can use for reasoning and 
recognition:  Frequentialist and Axiomatic.  
 

Probability as Frequency of Occurrence 
 
A frequency-based definition of probability is sufficient for many practical problems.   
 
Assume that we have some form of process that generates events belonging to one of 
K classes.  The event for each class is said to be "random". This means that the exact 
class can not be predicted in advance.   
 
 

 
 
Such a process is commonly used to model sensors that make observations of the 
world. We will often refer to events as "observations".  
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Suppose we have a set of N observations of random events {En}, for which Nk of 
these events belong to the class k.    The probability that one of these observed events 
from the set {En} belongs to the class k is is the relative frequency of occurrence of 
the class:  
 
 

! 

P(E " Ck ) =
Nk

N
 

 
If we make new observations under the same conditions (ergodicity), then it is 
reasonable to expect the fraction to be the same. However, because the observations 
are random, there may be differences.  These differences will grow smaller as the size 
of the set of observations,  N,  grows larger.  This is called the sampling error. We 
will return to this later.  
 
 Probability = relative frequency of occurrence.  
 
A frequency based definition is easy to understand and can be used to build practical 
systems. It can also be used to illustrate basic principles.  However it is possible to 
generalize the notion of probability with an axiomatic definition. This will make it 
possible to define a number of analytic tools. 
 

Axiomatic Definition of probability 
 
An axiomatic definition of probability makes it possible to apply analytical 
techniques to the design of reasoning an recognition systems.  Only three postulates 
(or axioms) are necessary:   
 
In the following, let E be an event (or observation), let S be the set of all events, and 
let Ck be the subset of events that belong to class k with K total classes.  
 
  

  

! 

S = Ck
k=1,K
!  is the set of all events.  

 
Postulate 1 :  ∀ Ck ∈ S  :  p(E∈Ck ) ≥ 0 
Postulate 2 :  p(E∈S) = 1 
Postulate 3 :  
∀ Ci, Cj ∈ S  such that   Ci ∩ Cj = ∅ :  p( E∈ Ci ∪ Cj) = p(E∈Ci) + p(E∈Cj)  
 
Any function, P(-) that obeys these 3 postulates can be used as a probability.   
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An axiomatic definition of probability can be very useful if we have some way to 
estimate the relative "likelihood" of different propositions.  
 
Let us define 

! 

"k  as the proposition that an event E belongs to class Ck : 

! 

"k # E $ Ck  
 
The likelihood of the proposition, 

! 

L("k ),  is a numerical function that estimates of its 
relative "plausibility" or believability of the proposition.  Likelihoods do not have to 
obey the probability postulates. 
 
We can convert a likelihood into a probability by normalizing so that the sum of all 
likelihoods is 1. To do this we simply divide by the sum of all likelihoods:  
 
 

! 

P("k ) =
L("k )

L("k )
k=1

K

#
 

 
Thus with axiomatic probability, any estimation of likelihood for the statement ωk 
can be converted to probability and used with Bayes rule. This is fundamental for 
Bayesian reasoning and for Bayesian recognition.  
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Histogram Representation of Probability 
 
We can use histograms both as a practical solution to many problems and to illustrate 
fundamental laws of axiomatic probability.   
 
A histogram is a table of "frequency of occurrence"  h(-).   
 
Suppose we have K classes of events, we can build a table of frequency of occurrence 
for observations from each class  h(E  ∈ Ck). 
 
Similarly if we have N observations of an event, and the event can be from K 
possible classes, k=1,…, K.  Suppose that the classes  
 
We can construct a table of frequency of occurrence for the class.  h(k).  
 
  ∀n=1, N : if En ∈ Ck  then h(k) := h(k) + 1;  
 
After N observations, given a new event,  E,    

! 

P(E " Ck ) = P(k) =
1
N
h(k) 

 

Probabilities of Numerical Properties. 
 
The notion of probability and frequency of occurrence are easily generalized to 
describe the likelihood of observed properties of objects. Such properties are often 
called "features" in the literature on pattern recognition.  
 
For example, consider the height, measured in cm, of people present in this lecture 
today.   Let us refer to the height of each student n, as a "random variable" Xn.  X is 
"random" because it is not known until we measure it.  
 
We can generate a histogram, h(x),  for the N students present :  
We first allocate a table  h(), of, say 300 cells, for heights between 1 and 300 cm.  
We then count the number of times each height occurs 
 
 ∀n=1, N : h(Xn) := h(Xn) + 1;  
 
After counting the heights we can make statements about the population of students. 
For example, the relative likelihood of height that a random student has a height of 
X=180cm is  
   L(X=180) = h(180) 
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This is converted to a probability by normalizing so that the values of all likelihoods 
sum to 1 (axiom 2).  
 

 

! 

P(X = x) =
1
N
h(x) 

 
We can use this to make statements about the population of students in the class 
(sample set) such as 
 
1) The average height of a member of the class is:  
 

 

! 

µx = E{Xn} =
1
N

h(k)
k=1

K

" # k =
1
N

Xn
N=1

N

"  

 
Where k is the set of possible heights in cm.   (note that average is the first moment, 
or center of gravity of the histogram).   
 
2) The largest height in the class is  
 
 

! 

xmax = arg"max
k

h(k){ }  

 
For symbolic features, such as gender or country of origin, the table h() can be 
implemented as a hash table, using the symbols as a key.   
 
Alternatively, we can map the features onto K natural numbers k <- Xn.   
 
However symbolic features do not necessarily have an order (as with numbers).  Thus 
we cannot define an "average" value for a symbolic feature.   
We CAN define a most likely value.  
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Probabilities of Vector properties.  
 
We can also generalize to multiple properties.  For example, each person in this class 
has a height, weight and age.  We can represent these as three integers x1, x2 and x3. 

Thus each person is represented by the "feature" vector  
  

! 

! 
X =

x1
x2
x3

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
.  

We can build up a 3-D histogram, h(x1, x2, x3),  for the N persons in this lecture as:  
 
   

! 

"n =1,N :h(
! 
X n ) = h(

! 
X n )+1 

 
or equivalently:   ∀n=1, N : h(x1, x2, x3) := h(x1, x2, x3) + 1; 
  
and the probability of a specific vector is  

  

! 

P(
! 
X = ! x ) =

1
N

h(x1, x2, x3 ) 

 

Number of samples required 
 
Problem:  Given a feature X, with K possible values, how many observations, N, do 
we need for a reliable estimate of probability? 
 
Answer:    
If the feature X has V possible values, then  h(x) has Q = V cells.  
If   

! 

! 
X  is a vector of D features, each with K values then Q = VD 

Q is the histogram "capacity". 
 
For N observations, in the worst case the sampling error is proportional to  

! 

O(Q
N
)  

 
This can be estimated by comparing the observed histograms to an ideal parametric 
model of the probability density or by comparing histograms of subsets samples to 
histograms from a very large sample.  
 
The RMS (root-mean-square) sampling error between a histogram and the underlying 
parametric density model is     ERMS = [E{(h(X)-P(X))2}]1/2 =  

! 

O(Q
N
).  

 
The worst case occurs when the true underlying density is uniform.     
For most applications,   N ≥  8 Q  (8 samples per "cell") is reasonable  
(less than 12% RMS error).   
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Bayes Rule and Conditional probability.  
 
Bayes Rule gives us a tool to determine "conditional probability".  
 
Conditional probability is the probability of an event given that another event has 
occurred.  
 
Conditional probability is one of the most fundamental and one of the most important 
concepts in probability theory.  
 
Conditional probabilities  require careful interpretation.  
For example, there need not be a causal or temporal relationship between the events.  
Conditional probability measures "correlation" or "association" not causality. 
 
Consider two classes of events A and B.   
Consider the probability that an event E belongs to A:  P(E∈A).  
For convenience we will note this as P(A). (also sometimes written P(ωa)) 
 
Similarly, consider the probability that an event belongs to the union A∪B.  
We will note this as P(A∪B) 
 
Conditional probability can be defined as 
 
 

! 

P(A | B) =
p(A" B)
P(B)

 

 
Equivalently, conditional probability can be defined as 
 
 

! 

P(A | B)P(B) = P(A" B) 
 
However, because set union is commutative:  
 
 

! 

P(A | B)P(B) = P(A" B) = P(B" A) = P(B | A)P(A) 
 
The relation  
 
    

! 

P(A | B)P(B) = P(B | A)P(A)    
 
is  Bayes rule.  
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We can apply this to classes of events, as well as to the properties of objects 
(symbolic or numeric).   
 
Consider the case where we have K classes of objects, Ck, where each object is 
characterized by a numerical feature X.  
 
Suppose we have a set of Nk sample observations for each class,  

! 

Sk = Xn
k{ }.  

 
We can use this set as a "training set" of samples to construct a histogram, h(k, x).  
 
h(k, x) is the joint probability of observing an event from class Ck it value X.  
 
 P( (E∈Ck) ∧ (X=x) ) = h(k, x) 
 
This can be used to estimate the probabilities of observing a class member of class Ck 
given the observation of a feature vector   

! 

! 
X .  

 
 P( E∈Ck | X=x ) P(X=x)  =  h(k, x) = P(X=x | E∈Ck) P(E∈Ck) 
 

! 

E " Ck  is commonly written as 

! 

"k .  It is common to simplify X=x as simply X.  
This gives  
 
  P(ωk | x) P(x)  =  h(k, x) = P(x | ωk) P(ωk) 
 
and thus 

! 

P("k | X) =
P("k | X)P("k )

P(X)
 

 
This also works for vector features and gives:  
 
    

! 

P("k |
! 
X )P(

! 
X ) = P("k |

! 
X )P("k ) 

 
and  

  

! 

P("k |
! 
X ) =

P("k |
! 
X )P("k )

P(
! 
X )
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Baye's Rule as a Ratio of Histograms 
 
These probabilities can be estimated from the training samples, for example using 
histograms.  
 
Consider an example of K classes of objects where objects are described by a an 
object property (or feature), X, with  V possible values.  
Assume that for  each of the K classes, we have a "training set" of Nk samples 

! 

xn
k{ }.  

 
For each class k, we allocate a histogram, hk(), with V cells and count the values in 
the training set.  
 
 ∀k: ∀n=1, Nk:  hk(Xn) := hk (Xn) + 1 
 
Then the probability of of observing a value X in the training set is 
 

 

! 

p(X = x |"k ) =
1
Nk

hk (x)  

 
The combined probability for all classes is just the sum of the histograms.  
 

  

! 

h(X) = hk (X)
k=1

K

"  and  

! 

N = Nk (X)
k=1

K

"  

Thus  

 

! 

p(X = x) =
1
N
h(x)  

 

! 

P("k )  can be estimated from the relative size of the training set.  
 
 

! 

p(E " Ck ) = p(#k ) =
Nk

N
 

 
 the probability that an observation E, with feature X belongs to class K is   
 

  

! 

p("k | X) =
p(X |"k )p("k )

p(X)
=

1
Nk

hk (X)
Nk

N
1
N
h(X)

=
hk (X)
h(X)

=
hk (X)

hk (X)
k=1

K

#
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To illustrate, consider an example  with 2 classes (K=2)  and where X can take on 8 
values (V=8, D=1).  
  

   
If we observe an unknown object E with property X=2, then  p(ω1| X=2 ) = ¼ 
  
Note: Using Histograms requires two assumptions.   
1) that the training set is large enough (N > 8 Q, where Q=VD),  and  
2) That the observing conditions do not change with time (stationary),  
 
We also assumed that the feature values were natural numbers in the range [1, V].  
this can be easily obtained from any features.  
 

Symbolic Features 
 
If the features are symbolic,  h(x) is addressed using a hash table, and the feature and 
feature values act as a hash key. As before h(x) counts the number of examples of 
each symbol. When symbolic x has N possible symbols then  
 
 

! 

p(X = x) =
1
M
h(x)  as before 

 
"Bag of Features" methods are increasingly used for learning and recognition. 
The only difference is that there is no "order" relation between the feature values.  
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Unbounded and real-valued features 
 
If X is real-valued and unbounded, we can bind it to a finite interval and quantize it.  
We can quantize with a function such as “trunc()” or “round()”.  The function trunc() 
removes the fractional part of a number.  Round() adds ½ then removes the factional 
part.   
 
To quantize a real X to N discrete values : [1, N] 
 

/* first bound x  to a finite range */ 
 
 If (x < xmin) then x := xmin; 
 If (x > xmax) then x := xmax; 
 

 

! 

n = round (N "1) #
x " xmin
xmax " xmin

$ 

% 
& 

' 

( 
) +1 

 
 
Alternatively, we can present   

! 

p(
! 
X ),   

! 

p(
! 
X |"k )  as Probability Density Functions.  
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Example: Grades for students from 3 countries 
 
Suppose we have a class with 38 students from 3 countries,  attending the same class. 
Let us call the countries Ck for k=1, 2, 3  
Assume   letter grade from the set {A, B, C, D, F}.  
 
We can build a 2 dimensional hash table, where each letter grade acts as a key into 
the table  h(x1, x2).  
 
This hash table, h(x1, x2),  with  Q= 5 x 3 = 15 cells.  
 
Each student from each country is an event with feature (x1, x2) = (Ck, G ) 
 
  ∀m=1, M  : if  h(Ck, G) := h(Ck, G)  + 1;  
 
Question: How many students are needed to fill this table? 
Answer  N ≥ 8Q = 120.  
 
An example, consider the table as follows:  
 
 x1  
             

 
   h(x1,x2) C1 C2 C3 r(x2) 

 A 1 1  2 
 B 4 3 1 8 
 C 6 3 2 11 
 D 4 1 1 6 
 

 
 
x2 

F 1   1 
  c(x1) 16 8 4 38 
 
Any cell, (x1, x2) represents the probability that a student from X1 got grade X2 
 
 p(X1 = x1 ∧ X2 = x2) = 

! 

1
M
h(x1, x2 ) 

 
Let us note the sum of column  x1 as c(x1) and sum of row x2 as r(x2) and the value of 
cell x1, x2 as h(x1,x2) 
 

 

! 

c(x1) = h(
x2={A,B,....F}
" x1, x2 ) = h(x1) 

! 

r(x2 ) = h(
x1={A,B,....F}
" x1, x2 )  = h(x2) 
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for example  c(x1=C2) =8,  r(x2=A) = 2,  h(C2,A) = 1 
 
From this table we can easily see three fundamental laws of probability:  
 

Sum Rule 

  

! 

p(X1 = x1) = p(X1 = x1,X2 = x2 ) =
x2={A,B,...,F}
" 1

M
h(x1, x2 ) =

1
Mx2={A,B,...,F}

" c(x1) 

 

example:   

! 

p(x1 =C2 ) = p(x1 =C2, x2 ) =
x2=A,B,...,F
" 1

N
h(C2 , x2 ) =

c(C2 )
Nx2=A,B,...,F

" =
8
38

 

 

from which we derive the sum rule:  

! 

p(X1 = x1) = p(X1 = x1,X2 = x2 )
X2

"  

or more simply 

! 

p(X1) = p(X1,X2 )
X2

"  

This is sometimes called the "marginal" probability, obtained by "summing out" the 
other probabilities.  
 

Conditional probability as ratio of histograms  
 
We can define a "conditional" probability as the fraction of one probability given 
another.  
 
 

! 

p(X1 = x1 | X2 = x2 ) =
h(x1, x2 )
r(x2 )

=
h(x1, x2 )
h(x1, x2 )

x1

"
   

For example.    
 
  

! 

p(X1 =C1 | X2 = B) =
h(C1,B)
h(x1,B)

x1

"
=
4
8

 and 

! 

p(X2 = D | X1 =C1) =
h(D,C1)
h(D, x2 )

x2

"
=
4
6

 

 
 From this, we can derive Bayes rule :  

! 

p(X1 | X2 ) " p(X2 ) =
h(X1,X2 )
h(X1,X2 )

X1

#
" h(X1,X2 )
X1

# = h(X1,X2 ) =
h(X1,X2 )
h(X1,X2 )

X2

#
" h(X1,X2 )
X2

# = p(X2 | X1) " p(X1)

or more simply 
 

! 

p(X1 | X2 ) " p(X2 ) = p(X1,X2 ) = p(X2 | X1) " p(X1) 
 
or more commonly written: 

! 

p(X1 | X2 ) =
p(X2 | X1) " p(X1)

p(X2 )
 


