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Notation 
 
x   a variable 
X   a  random variable (unpredictable value)   
N   The number of possible values for x (Can be infinite).   
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

E   An observation. An event.  
Ck   The class  k 
k   Class index 
K   Total number of classes 
ωk   The statement (assertion) that E  ∈ Ck 
Mk   Number of examples for the class k. (think M = Mass) 
M   Total number of examples.  

   

! 

M = Mk
k=1

K

"  

  

! 

{! x m
k }  A set of Mk examples for the class k.  

   
  

! 

{! x m} = "
k=1,K

{! x m
k } 

  



Bayesian Recognition and Reasoning Lesson 13 

 13-3 

Bayesian Recognition and Reasoning 
 
For two proposition A and B,  Bayes Rule tells us that  
 
 P(A, B) = P(A | B) P(B) = P(B | A) P(B) 
 
This can be used for Recognition or for Reasoning 
 

Bayesian Recognition 
 
Our problem is to build a box that maps a set of features   

! 

! 
X  from an Observation, E 

into a class Ck from a set of K possible Classes.  
 

  

Class(x1,x2, ..., x d)} !̂

x1
x2
...
xd

 
 
Let ωk be the proposition that the event E belongs to class k:  

 
  ωk = E ∈ Ck 
 
In order to minimize the number of mistakes, we will maximize the probability that 
that the event E  ∈ the class k 
 

 
  

! 

ˆ " k = arg#max
k

Pr("k |
! 
X ){ }  

 
A fundamental tool for this is Baye's rule.  
 
 

  

! 

p("k |
! 
X ) =

p(
! 
X |"k )P("k )

p(
! 
X )
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Bayesian Reasoning 
 
Bayes Rule also gives a technique for using evidence to support a hypothesis.  
 
Let H  a hypothesis and let E be  evidence for the hypotheses.  
 
Then Bayes rule tells us 
 
 P(H,  E) = P(H | E ) P(E ) = P(E | H) P(H ) 
 
so that  
 
 

! 

P(H | E) =
P(E | H )P(H )

P(E)
 

 
The problem is how to incrementally accumulate evidence 

 
Z-1 is a memory buffer 

 
We will see this in the second half of today's lesson.  
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Supervised Learning 
 
We will use a set of labeled "training set" of samples to estimate the probabilities 
  

! 

p(
! 
X ),   

! 

p(
! 
X |"k ) , and 

! 

P("k ) . This is referred to as "supervised learning".  
 
Assume that we have K classes.  
For each class we have a set of Mk sample events   

! 

Sk =
! x m

k{ }.  
 
The union of the training samples for each class gives us our training set:  

 
  

! 

S = {! x m} = "
k=1,K

{! x m
k }  composed of  

! 

M = Mk
k=1

K

"  samples (think M = Mass) 

 
In the simplest cases, we can use histogram (tables of frequencies) to represent the 
probabilities. Alternatively, we can present   

! 

p(
! 
X ),   

! 

p(
! 
X |"k )  as Probability Density 

Functions.  
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Example:  Grades in Two Courses 
 
Suppose we have a set of events described by a pair of properties.  
For example, consider the your grade in 2 classes x1 and x2.  
 
Assume your grade is a letter grade from the set {A, B, C, D, F}.  
 
We can build a 2 dimensional hash table, where each letter grade acts as a key into 
the table  h(x1, x2).  
 
This hash table has  Q= 5 x 5 = 25 cells.  
 
Each student is an observation with a pair of grades (x1, x2).     
 
  ∀m=1, M  : if  h(x1, x2) := h(x1, x2)  + 1;  
 
Question: How many students are needed to fill this table? 
Answer  M ≥ 8Q = 200.  
 
An example, consider the table as follows:  
 
 x1  
             

 
   h(x1,x2) A B C D F r(x2) 

 A 2 5 3 1   11 
 B 5 16 8 1   30 
 C 2 12 20 3 1 38 
 D   2 6 2 2 12 
 

 
 
x2 

F     4 4 1 9 
  c(x1) 9 35 41 11 4 100 
 
Any cell, (x1, x2) represents the probability that a student got grade X1 for course C1 
and grade X2 for  course C2. 
 
 p(X1 = x1 ∧ X2 = x2) = 

! 

1
M
h(x1, x2 ) 

 
Let us note the sum of column  x1 as c(x1) and sum of row x2 as r(x2) and the value of 
cell x1, x2 as h(x1,x2) 
 



Bayesian Recognition and Reasoning Lesson 13 

 13-7 

 

! 

c(x1) = h(
x2={A,B,....F}
" x1, x2 )  

! 

r(x2 ) = h(
x1={A,B,....F}
" x1, x2 )   

 
for example  r(x1=B) = 30,  C(x2=B) = 35,  h(x1,x2) = 16 
 
From this table we can easily see three fundamental laws of probability:  
 

Sum Rule 

  

! 

p(X1 = x1) = p(X1 = x1,X2 = x2 ) =
x2={A,B,...,F}
" 1

M
h(x1, x2 ) =

1
Mx2={A,B,...,F}

" c(x1) 

 

example:   

! 

p(x1 = B) = p(x1 = B, x2 ) =
x2=A,B,...,F
" 1

M
h(B, x2 ) =

c(B)
Mx2=A,B,...,F

" =
35
100

 

 

from which we derive the sum rule:  

! 

p(X1 = x1) = p(X1 = x1,X2 = x2 )
X2

"  

or more simply 

! 

p(X1) = p(X1,X2 )
X2

"  

This is sometimes called the "marginal" probability, obtained by "summing out" the 
other probabilities.  
 

Conditional probability   
 
We can define a "conditional" probability as the fraction of one probability given 
another.  
 
 

! 

p(X1 = x1 | X2 = x2 ) =
h(x1, x2 )
r(x2 )

=
h(x1, x2 )
h(x1, x2 )

x1

"
   

 
For example.  
 
  

! 

p(X1 = B | X2 =C) =
h(B,C)
h(x1,C)

x1

"
=
12
38

 and 

! 

p(X2 =C | X1 = B) =
h(B,C)
h(B, x2 )

x2

"
=
12
35

 

 
 From this, we can derive Bayes rule :  
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! 

p(X1 | X2 ) " p(X2 ) =
h(X1,X2 )
h(X1,X2 )

X1

#
" h(X1,X2 )
X1

# = h(X1,X2 ) =
h(X1,X2 )
h(X1,X2 )

X2

#
" h(X1,X2 )
X2

# = p(X2 | X1) " p(X1)

 
or more simply 
 
 

! 

p(X1 | X2 ) " p(X2 ) = p(X2 | X1) " p(X1) 
 
or more commonly written: 
 
 

! 

p(X1 | X2 ) =
p(X2 | X1) " p(X1)

p(X2 )
 

 

Product Rule  
 
We can also use the histogram to derive the product rule.  
 
Note that 

! 

p(X1 = i,X2 = j) = h(i, j)  
 
  

! 

p(X1 = i | X2 = j) =
h(i, j)

h(i, j)
i
"

 

 
and  

! 

p(X1,X2 ) = p(X1 | X2 ) " p(X2 ) 
 
These rules show up frequently in machine learning and Bayesian estimation.  
 
Note that we did not need to use numerical values for x1 or x2.   
 

Symbolic Features 
 
If the features are symbolic,  h(x) is addressed using a hash table, and the feature and 
feature values act as a hash key. As before h(x) counts the number of examples of 
each symbol. When symbolic x has N possible symbols then  
 
 

! 

p(X = x) =
1
M
h(x)  as before 

 
"Bag of Features" methods are increasingly used for learning and recognition. 
The only difference is that there is no "order" relation between the feature values.  
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Bayesian Reasoning as Evidence Accumulation 
 
Bayesian Reasoning is a widely used technique to validate or invalidate hypothesis 
using uncertain or unreliable information. With this approach, a hypothesis statement, 
H, is formulated and assigned a probability, P(H).   As new evidence, E, for or 
against the hypothesis is obtained it is also assigned a probability P(E) as well as a 
probability that it confirms the hypothesis, P(E|H).  Baye's rule can then used to 
update the probability of the hypothesis:  
 
 

! 

P(H | E)" P(E | H )P(H )
P(E)

 

 
In Bayesian reasoning, this rule is applied recursively as new evidence is obtained.  
 
Assume that we have two independent evidences, E1 and E2.  
 
 

! 

P(H | E1,E2 ) =
P(E1,E2 | H )P(H )

P(E1,E2 )
 

 
Assume that we have K hypotheses, Hk and we seek to accumulate evidence to select 
the most likely hypothesis.  
 
Let us define S={En} as a body of previous evidence composed of N observations, 
and E as a new observation.   
 
Assuming that the new evidence E is independent of the previous evidence S, Baye's 
Rule tells us:  
 
 

! 

P(Hk | E,S) =
P(E,S | Hk )P(Hk )

P(E,S)
 

 
Formally, evidence accumulation poses the problem of how to represent the joint 
probability of the new evidence, E, and all of the past evidence S.  This is solved by 
assuming conditional independence for the evidence which may not be strictly true.    
To solve this we may note that Bayes rule also gives 
 
 

! 

P(Hk | E,S)P(E,S) = P(E,S | Hk )P(Hk ) 
 
Because P(E, S) is the same for all hypotheses, it can be dropped.  
This gives a likelihood for each hypothesis which can be expressed as: 
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! 

L(Hk | E,S) = P(E,S | Hk )P(Hk ) 
 
and that  
 
 

! 

P(E,S | Hk ) = P(E | Hk )P(S | Hk )  
 
so that  
 
 

! 

L(Hk | E,S) = P(E | Hk )P(S | Hk )P(Hk ) 
 
For L(Hk | E,S) to be a probability, we normalize by the sum of all likelihoods. 
 
Which gives  

! 

P(Hk | E,S)"
P(E | Hk )P(S | Hk )P(Hk )

P(E | H j )P(S | H j )P(H j )
j=1

K

#
 

 
Thus we can accumulate evidence recursively and arrive at a probability by 
renormalizing. 
  
Note that the values for the cumulative evidence 

! 

P(S | Hk ) are in fact a product of 
probabilities the N individual evidences, En.  
 

 

! 

P(Hk | S) =
P(En | Hk )P(Hk )n=1

N
"

P(En | H j )P(H j )n=1

N
"

j=1

K
#

 

 
We accumulate this product recursively as we update the probabilities for each 
hypothesis with new evidence.  
 


