Intelligent Systems: Reasoning and Recognition

James L. Crowley

ENSIMAG 2 / MoSIG M1

Second Semester 2013/2014

Lesson 13

2 April 2014

Bayesian Recognition and Reasoning

2
3
5
6
7
7
8
8

Bayesian Reasoning as Evidence Accumulation10

Bibliographical sources:

"Pattern Recognition and Machine Learning", C. M. Bishop, Springer Verlag, 2006. "Pattern Recognition and Scene Analysis", R. E. Duda and P. E. Hart, Wiley, 1973.

<u>Notation</u>

Х	a variable
Х	a random variable (unpredictable value)
Ν	The number of possible values for x (Can be infinite).
\vec{x}	A vector of D variables.
\vec{X}	A vector of D random variables.
D	The number of dimensions for the vector \vec{x} or \vec{X}
E	An observation. An event.
C_k	The class k
k	Class index
Κ	Total number of classes
ω_k	The statement (assertion) that $E \in C_k$
M _k	Number of examples for the class k. (think $M = Mass$)
Μ	Total number of examples.
	$M = \sum_{k=1}^{K} M_k$
$\{\vec{x}_m^k\}$	A set of M_k examples for the class k.
	$\{\vec{x}_m\} = \bigcup_{k=1,K} \{\vec{x}_m^k\}$

Bayesian Recognition and Reasoning

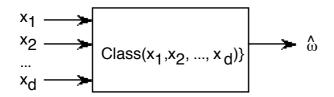
For two proposition A and B, Bayes Rule tells us that

$$P(A, B) = P(A | B) P(B) = P(B | A) P(B)$$

This can be used for Recognition or for Reasoning

Bayesian Recognition

Our problem is to build a box that maps a set of features \vec{X} from an Observation, E into a class C_k from a set of K possible Classes.



Let ω_k be the proposition that the event E belongs to class k:

$$\omega_k \equiv E \in C_k$$

In order to minimize the number of mistakes, we will maximize the probability that that the event $E \in$ the class k

$$\hat{\omega}_k = \arg\max_k \left\{ \Pr(\omega_k \mid \vec{X}) \right\}$$

A fundamental tool for this is Baye's rule.

$$p(\omega_k \mid \vec{X}) = \frac{p(\vec{X} \mid \omega_k) P(\omega_k)}{p(\vec{X})}$$

Bayes Rule also gives a technique for using evidence to support a hypothesis.

Let H a hypothesis and let E be evidence for the hypotheses.

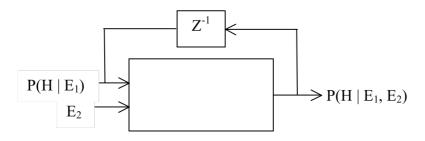
Then Bayes rule tells us

P(H, E) = P(H | E) P(E) = P(E | H) P(H)

so that

$$P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}$$

The problem is how to incrementally accumulate evidence



Z⁻¹ is a memory buffer

We will see this in the second half of today's lesson.

13-4

Supervised Learning

We will use a set of labeled "training set" of samples to estimate the probabilities $p(\vec{X})$, $p(\vec{X} | \omega_k)$, and $P(\omega_k)$. This is referred to as "supervised learning".

Assume that we have *K* classes. For each class we have a set of M_k sample events $S_k = \{\vec{x}_m^k\}$.

The union of the training samples for each class gives us our training set:

$$S = \{\vec{x}_m\} = \bigcup_{k=1,K} \{\vec{x}_m^k\}$$
 composed of $M = \sum_{k=1}^{K} M_k$ samples (think $M =$ Mass)

In the simplest cases, we can use histogram (tables of frequencies) to represent the probabilities. Alternatively, we can present $p(\vec{X})$, $p(\vec{X} | \omega_k)$ as Probability Density Functions.

Example: Grades in Two Courses

Suppose we have a set of events described by a pair of properties. For example, consider the your grade in 2 classes x_1 and x_2 .

Assume your grade is a letter grade from the set {A, B, C, D, F}.

We can build a 2 dimensional hash table, where each letter grade acts as a key into the table $h(x_1, x_2)$.

This hash table has $Q=5 \times 5 = 25$ cells.

Each student is an observation with a pair of grades (x_1, x_2) .

 \forall m=1, M : if h(x₁, x₂) := h(x₁, x₂) + 1;

Question: How many students are needed to fill this table? Answer $M \ge 8Q = 200$.

An example, consider the table as follows:

		X ₁					
$h(x_1,x_2)$		Α	В	С	D	F	r(x ₂)
x ₂	А	2	5	3	1		11
	В	5	16	8	1		30
	С	2	12	20	3	1	38
	D		2	6	2	2	12
	F			4	4	1	9
	$c(x_1)$	9	35	41	11	4	100

Any cell, (x_1, x_2) represents the probability that a student got grade X_1 for course C_1 and grade X_2 for course C_2 .

$$p(X_1 = x_1 \land X_2 = x_2) = \frac{1}{M}h(x_1, x_2)$$

Let us note the sum of column x_1 as $c(x_1)$ and sum of row x_2 as $r(x_2)$ and the value of cell x_1, x_2 as $h(x_1, x_2)$

Bayesian Recognition and Reasoning

Lesson 13

$$c(x_1) = \sum_{x_2 = \{A, B, \dots, F\}} h(x_1, x_2) \qquad r(x_2) = \sum_{x_1 = \{A, B, \dots, F\}} h(x_1, x_2)$$

for example $r(x_1=B) = 30$, $C(x_2=B) = 35$, $h(x_1,x_2) = 16$

From this table we can easily see three fundamental laws of probability:

Sum Rule

$$p(X_1 = x_1) = \sum_{x_2 = \{A, B, \dots, F\}} p(X_1 = x_1, X_2 = x_2) = \frac{1}{M} \sum_{x_2 = \{A, B, \dots, F\}} h(x_1, x_2) = \frac{1}{M} c(x_1)$$

example: $p(x_1 = B) = \sum_{x_2 = A, B, \dots, F} p(x_1 = B, x_2) = \frac{1}{M} \sum_{x_2 = A, B, \dots, F} h(B, x_2) = \frac{c(B)}{M} = \frac{35}{100}$

from which we derive the sum rule: $p(X_1 = x_1) = \sum_{X_2} p(X_1 = x_1, X_2 = x_2)$

or more simply $p(X_1) = \sum_{X_2} p(X_1, X_2)$

This is sometimes called the "marginal" probability, obtained by "summing out" the other probabilities.

Conditional probability

We can define a "conditional" probability as the fraction of one probability given another.

$$p(X_1 = x_1 \mid X_2 = x_2) = \frac{h(x_1, x_2)}{r(x_2)} = \frac{h(x_1, x_2)}{\sum_{x_1} h(x_1, x_2)}$$

For example.

$$p(X_1 = B \mid X_2 = C) = \frac{h(B,C)}{\sum_{x_1} h(x_1,C)} = \frac{12}{38} \text{ and } p(X_2 = C \mid X_1 = B) = \frac{h(B,C)}{\sum_{x_2} h(B,x_2)} = \frac{12}{35}$$

From this, we can derive Bayes rule :

Bayesian Recognition and Reasoning

Lesson 13

$$p(X_1 \mid X_2) \cdot p(X_2) = \frac{h(X_1, X_2)}{\sum_{X_1} h(X_1, X_2)} \cdot \sum_{X_1} h(X_1, X_2) = h(X_1, X_2) = \frac{h(X_1, X_2)}{\sum_{X_2} h(X_1, X_2)} \cdot \sum_{X_2} h(X_1, X_2) = p(X_2 \mid X_1) \cdot p(X_1)$$

or more simply

$$p(X_1 | X_2) \cdot p(X_2) = p(X_2 | X_1) \cdot p(X_1)$$

or more commonly written:

$$p(X_1 \mid X_2) = \frac{p(X_2 \mid X_1) \cdot p(X_1)}{p(X_2)}$$

Product Rule

We can also use the histogram to derive the product rule.

Note that $p(X_1 = i, X_2 = j) = h(i, j)$

$$p(X_1 = i | X_2 = j) = \frac{h(i, j)}{\sum_{j} h(i, j)}$$

and $p(X_1, X_2) = p(X_1 | X_2) \cdot p(X_2)$

These rules show up frequently in machine learning and Bayesian estimation.

Note that we did not need to use numerical values for x_1 or x_2 .

Symbolic Features

If the features are symbolic, h(x) is addressed using a hash table, and the feature and feature values act as a hash key. As before h(x) counts the number of examples of each symbol. When symbolic x has N possible symbols then

$$p(X = x) = \frac{1}{M}h(x)$$
 as before

"Bag of Features" methods are increasingly used for learning and recognition. The only difference is that there is no "order" relation between the feature values.

Bayesian Reasoning as Evidence Accumulation

Bayesian Reasoning is a widely used technique to validate or invalidate hypothesis using uncertain or unreliable information. With this approach, a hypothesis statement, H, is formulated and assigned a probability, P(H). As new evidence, E, for or against the hypothesis is obtained it is also assigned a probability P(E) as well as a probability that it confirms the hypothesis, P(E|H). Baye's rule can then used to update the probability of the hypothesis:

$$P(H \mid E) \leftarrow \frac{P(E \mid H)P(H)}{P(E)}$$

In Bayesian reasoning, this rule is applied recursively as new evidence is obtained.

Assume that we have two independent evidences, E_1 and E_2 .

$$P(H \mid E_1, E_2) = \frac{P(E_1, E_2 \mid H)P(H)}{P(E_1, E_2)}$$

Assume that we have *K* hypotheses, H_k and we seek to accumulate evidence to select the most likely hypothesis.

Let us define $S = \{E_n\}$ as a body of previous evidence composed of N observations, and E as a new observation.

Assuming that the new evidence E is independent of the previous evidence S, Baye's Rule tells us:

$$P(H_k \mid E, S) = \frac{P(E, S \mid H_k)P(H_k)}{P(E, S)}$$

Formally, evidence accumulation poses the problem of how to represent the joint probability of the new evidence, E, and all of the past evidence S. This is solved by assuming conditional independence for the evidence which may not be strictly true. To solve this we may note that Bayes rule also gives

$$P(H_k | E,S)P(E,S) = P(E,S | H_k)P(H_k)$$

Because P(E, S) is the same for all hypotheses, it can be dropped. This gives a likelihood for each hypothesis which can be expressed as:

$$L(H_k | E, S) = P(E, S | H_k)P(H_k)$$

and that

$$P(E,S \mid H_k) = P(E \mid H_k)P(S \mid H_k)$$

so that

$$L(H_k | E, S) = P(E | H_k)P(S | H_k)P(H_k)$$

For $L(H_k | E, S)$ to be a probability, we normalize by the sum of all likelihoods.

Which gives
$$P(H_k | E, S) \leftarrow \frac{P(E | H_k)P(S | H_k)P(H_k)}{\sum_{j=1}^{K} P(E | H_j)P(S | H_j)P(H_j)}$$

Thus we can accumulate evidence recursively and arrive at a probability by renormalizing.

Note that the values for the cumulative evidence $P(S|H_k)$ are in fact a product of probabilities the N individual evidences, E_n .

$$P(H_{k} | S) = \frac{\prod_{n=1}^{N} P(E_{n} | H_{k}) P(H_{k})}{\sum_{j=1}^{K} \prod_{n=1}^{N} P(E_{n} | H_{j}) P(H_{j})}$$

We accumulate this product recursively as we update the probabilities for each hypothesis with new evidence.