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1. Image Scale Space   
1.1. Continuous Scale Space.  
 
 Let P(x, y) be an image of size W columns by R rows.  
 Let  G(x, y, σ) by a Gaussian function of scale σs 
 
Image Scale space is a 3D continuous space P(x, y, s) 
 
 P(x, y, s)  =  P* G(x, y, 2s)  

y

x
x

Sca le
(Resolution)

 
Scale space:  
 Separates global structure from fine detail.  
 Provides context for recognition.  
 Can provides local descriptions (features) of the image that are invariant to 
position, orientation and scale.  
 
Note that the scale axis (s) in scale space is logarithmic  
 
 s = Log2(σ) = Log2(2s) 
 
A logarithmic scale axis is necessary for  scale equivariance. 
The appearance of a pattern in the image results in a unique structure in P(x, y, s).  
If a shape in an image is made larger by D  = 2d    
 
 p(x,y) -> p(x2d, y2d) 
 
Then the scale space projection of appearance is shifted by s in scale. 
 
 P(x,y,s+d) = p(x2d, y2d) * G(x2s+d, y2 s+d, 2 s+d) 
 
This structure is "equivariant" in position, scale and rotation meaning that the 
structure has the same form, only shifted in the scale axe. 
 
Translate the pattern by ∆x, ∆y and the structure translates by ∆x, ∆y in  P(x, y, s).  
Rotate by θ in x, y and the structure rotates by θ in P(x, y, s).  
Scale by a factor of 2s, and the structure translates by ∆s in P(x, y, s). 
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1.2. Discrete Scale Space - Scale invariant impulse response.  
 
In a computer, we need to discretize (sample) the axes x, y, and s.  
 
Let P(x, y) is an image array of size WxH pixels, where (x, y) are integers, 
 
We propose to sample scale with a step size of ∆σ = 21/2  so that σk=2k/2 
For k=0, to K.   
 
σ0=1 is the smallest scale that we can represent.  
 
At k=0 σ0=20/2=1.  
 
K is the largest scale possible:   K=2Log2(min(W, H)) 
For larger K the scale parameter σ is larger than the image.  
 
1.3. Spatial Resampling 
 
Because each level of the Gaussian Space has been smoothed by convolution with a 
Gaussian low pass filter, it is possible to resample the image with a step size that 
grows with the scale of the Gaussian.    
 
For example, we can use  
  
 ∆xk = 2(k-1)/2 
 
With only minimal alliassing.  
 
The result an identical impulse response at each level.  
This property is called “scale invariance”.   
 
Diagonal, Square root of two Sampling 
 
With σk=2k/2 the impulse response doubles ever two levels.  What happens on the 
even levels? 
 
 ∆x = 2(k-1) /2  = (√2)k-1 

 
for k odd, ∆xk

 = {1, 2, 4, 8…} 
for k even, ∆xk = {√2, 2√2, 4√2, 8√2, …} 
 
Problem :  How can we sample an image at ∆x=√2?   
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Solution: Sample along diagonals! 
 
How ?  with the diagonal sampling operator S√2{}   
 

  
For k even, the √2 resampling operator, S√2

k{}, selects even columns of even rows 
and odd columns of odd rows.  
 
For k odd, diagonal sample operator eliminates every second column (starting with 
even columns on even rows and odd columns on odd rows). For k odd, resampling 
eliminates every second row (odd rows).   
 
 

! 

S
2
k {P{x, y)} =

P(x, y)     if (x + y)2  Mod 2k-1 = 0
0                             otherwise

" 
# 
$ 

 

 

  
 
With root 2 sampling, the number of samples is reduced by half every level.  
(Normally with S=2 sampling, it would be reduced by 4).  
 
This is illustrated with the following table.  
 

 k sk=2k/2 ∆xk=2(k-1)/2 Columns Rows Samples 
 0 1 1 W W N 
 1 √2 1 W W N 
 2 2 √2 W/2 W N/2 
 3 2√2 2 W/2 W/2 N/4 
 4 4 2√2 W/4 W/2 N/8 
 5 4√2 4 W/4 W/4 N/16 
        6 8 4√2 W/8 W/4 N/32 
 7 8√2 8 W/8 W/8 N/64 
 8 16 8√2 W/16 W/8 N/128 
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For an image of size N=WxH, number of samples, if we disregard level k=0, then  
the pyramid has P samples.  
 
 P = N x (1 + ½ + ¼ + …) = 2N  

 
But note that the for the last few levels, σk > Min(W, H), and the level is dominated 
by boundary effects and not usable.  
 
This is true when Min(W, H) < 2(k-1)/2 
 
1.4. Using the Pyramid to compute image derivatives 
 
Last week we saw thatthe derivatives can be computed by convolving the image with 
derivatives of Gaussians 
 
 

! 

Px (x, y) " P *Gx (x, y,# )  
 
With the Pyramid, derivatives can be obtained directly by sum and difference of the 
resampled pixels.  
 
 Let i = x/∆xk  and j= y/∆yk 
Then  
 

! 

Px (i, j,k) " P(i+1, j,k)#P(i #1, j,k) 
 

! 

Py(i, j,k) " P(i, j +1,k)#P(i, j #1,k)  
 

! 

Pxx (i, j,k) " P(i+1, j,k)# 2P(i, j,k)+P(i #1, j,k) 
 

! 

Pyy(i, j,k) " P(i, j +1,k)# 2P(i, j,k)+P(i, j #1,k)  
 

! 

Pxy(i, j,k) " P(i+1, j +1,k)#P(i #1, j +1,k)#P(i+1, j #1,k)+P(i #1, j #1,k) 
 
These are sometimes referred to as "Receptive Fields" 
 
Laplacien: 

! 

"2P(x, y,k) = P *"2G(x, y,# k ) = Pxx (x, y,k)+Pyy(x, y,k)  
 
For a pyramid we can use the diffusion Equation to show:  
 
 

! 

"2Gx (x, y,# ) =Gxx (x, y,# )+Gyy(x, y,# ) =
$G(x, y,# )

$#
 

 
As a consequence:     ∇2G(x, y, σ)  ≈ G(x, y, σ1)  – G(x, y, σ

2
)   

 
This typically requires    σ1≥ 2  σ2 
 
Thus it is common to use:  
 
 ∇2P(x, y, k)  ≈ P(x, y, k) – P(x, y, k–1)   
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1.5. Color Opponent Scale Space 
 
In lesson 3 we saw that a color opponent space was useful for illumination invariance 
 

 (R, G, B) ⇒ (L, C1, C2)  
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This representation separates luminance and chrominance.  
 

 
 
 

 

  

 

 

 

 

 
RGB  B-W R-G R+G-B 

 
Color opponent space can be used to build receptive fields that can be steered in color 
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We then compute 3 pyramids :  L(x, y, k), C1(x, y, k), and C2(x, y, k), 
 
This gives us a feature vector for appearance:  

 

  

! 

! 
A (x, y,k) =

Gx
L" k

GC1" k

GC2" k

Gx
C1" k

Gx
C2" k

Gxx
L" k

Gxy
L" k

Gyy
L" k

# 

$ 

% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 
( 
( 
( 
( 
( 

 

 
This can be generalized to include multiple scales.  
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2. Pixel Level Detection using Color and Appearance 
 
Recall from Lecture 3 that we used Baye’s Rule and histograms to determine the 
probability that a pixel was skin. Probabilities can be grouped into “blobs” and 
tracked with a Bayesian Tracker.  
 
Reminder: 
Skin pigment is generally always the same color.  Skin chrominance is invariant with 
illumination intensity.  
 
 Chrominance :  

! 

c1 = r =
R

R+G + B
  

! 

c2 = g =
G

R+G + B
  

 
We can map this to N+1 values between 0 and  N 
  

 c1 = trunc( N · 
R

R+G+B )  c2 = trun(N · 
G

R+G+B ) 

 
From Bayes rule:  

  

! 

p(target | ! c (i, j))= p(! c (i, j) | target)p(target)
p(! c (i, j))

=

1
M k

hk (
! c (i, j))M k

M
1
M

h(! c (i, j))
=

hk (
! c (i, j))

h(! c (i, j))  

  

  
 
We can use this to convert each color pixel c(i,j) to a probability, p(i,j),  by table 
lookup.  
 
This approach can be generalized for other local features.  
For example, the vector of Gradient Derivatives.  
 

 
  

! 

p(i, j) = p(target |
! 
A (i, j)) =

hk (
! 
A (i, j))

h(
! 
A (i, j))  
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2.1. Histograms of Receptive Fields 
 
This method can be generalised to ANY vector of features.  For example, the 
appearance of a neighborhood given by the receptive field vector.  
 
   

! 

! 
V (i, j;" i ,#i ) = P(i,j) * (Gx, Gxx, Gxy, Gyy) at  σi and θi.  

 
ATTENTION.  The histogram must have sufficient samples M.  
 
 M ≥ 10 Q ≥ 10 ND.  

  
For the above example:  D = 4.  
 
Here is a table of numbers of cells in a histogram of D dimensions of N values.  
 
 
  N  \    d 1 2 3 4 5 6 
2  21 22 23 24 25 26 
4  22 24 26 28 210 =1 Kilo 212 =2 Kilo 
8  23 26 29 212 215 218 
16  24 28 212 216 220 = 1 Meg 224 = 4 Meg 
32 25 210 =1 Kilo 215 220 = 1 Meg 225 230 = 1 Gig 
64 26 212 218 224 230 = 1 Gig 236  
128 27 214 221 = 2 Meg 228  235  242 =2 Tera 
256 28 216 224 232 = 2 Gig 240 = 1 Tera 248  
 
 
Consider the chromatic receptive fields normalized in scale and orientation σi and θi.  
 
  P 

→

σ,θ = (Px 
L,  Px 

C1, Px 
C2, Pxx 

L, Pxy 
L,  Pxx 

C1, Pxx 
C2 ) 

 
 D= 7.   
 
 p(objet(i,j)  | V 

→
(i,j)  ) = 

  

! 

p(
! 
V (i, j) | object(i, j)

p(object(i, j))
p(
! 
V (i, j)≈  

  

! 

ho(
! 
V (i, j))

h(
! 
V (i, j))
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3. Gaussian Blob Tracking 
 
To construct a Bayesian tracker, we need to represent clouds of pixels with high 
probability of being a target. To do this we represent such clouds as “Gaussian 
Blobs”.    
 
Gaussian blobs express a region in terms of moments.   
Confidence is the sum (mass) of the detection probability pixels, t(i,j).  
Position is center of gravity.  
Size is the second moment (covariance).  
 
We use some form of "a priori" estimation to estimate a Region of Interest (ROI) for 
the blob.  Let us represent the ROI as a rectangle : (t,l,b,r)   
 
 t - "top" - first row of the ROI.  
 l - "left" - first column of the ROI.  
 b - "bottom" - last row of the ROI 
 r - "right"  -last column of the ROI.  
 
(t,l,b,r)  can be seen as a bounding box, expressed by opposite corners (l,t), (r,b) 
  
3.1. Moment Calculations for Blobs 
 
Given a target probability image t(i,j) and a ROI (t,l,b,r):  
 

 Sum:   

! 

S =
i=l

r

" t
j=t

b

" (i, j) 

 
We can estimate the "confidence" as the average detection probability:  
 
 Confidence:  

! 

CF =
S

(b " t)(r " l)
 

 

First moments:   

! 

µi =
1
S i=l

r

" t
j=t

b

" (i, j) # i   

! 

µ j =
1
S i=l

r

" t
j=t

b

" (i, j) # j  

 
 Position is the center of gravity: (µi, µj)  
   

Second Moments:   

! 

" i
2 =
1
S i=l

r

# t
j=t

b

# (i, j) $ (i %µi )
2 

    

! 

" j
2 =
1
S i=l

r

# t
j=t

b

# (i, j) $ ( j %µ j )
2  
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! 

" ij
2 =
1
S i=l

r

# t
j=t

b

# (i, j) $ (i %µi ) $ ( j %µ j ) 

 

These compose the covariance matrix:  

! 

C =
" i
2 " ij

2

" ij
2 " j

2

# 

$ 
% 

& 

' 
(  

 
The principle components (λ1, λ2) determine the length and width.  
The principle direction determines the orientation of the length.  
We can discover these by principle components analysis.  

!1!2

 
 

! 

"C"T =# =
$1
2 0
0 $2

2

% 

& 
' 

( 

) 
*  

where  

 

! 

" =
cos(# ) sin(# )
$sin(# ) cos(# )
% 

& 
' 

( 

) 
*  

 
The length to width ratio,  λ1/λ2, is an invariant for shape.  
 

This suggests a "feature vector" for the blob: 

! 

x
y
w
h
"

# 

$ 

% 
% 
% 
% 
% % 

& 

' 

( 
( 
( 
( 
( ( 

 

 
where  x= µi, y = µj, w=λ1, h=λ2  
 and  
 

! 

CF =
S

(b " t)(r " l)
  

   
However, for tracking we need to keep explicit the center of gravity and covariance.  
Thus we will track:  

  Position: 
  

! 

! 
µ t =

µi

µ j

" 

# 
$ 

% 

& 
'  Size : 

! 

Ct =
" i
2 " ij

2

" ij
2 " j

2

# 

$ 
% 

& 

' 
(   along with CFt.  
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3.2. Bayesian Estimation 
 
A Bayesian tracker is a recursive estimator, composed of the phases:  
Predict, Detect, estimate.  
Having "detected a blob", next we need estimate the parameters.  
 

 
 
The detection process can contain errors due to missed detection and false detection.  
To minimize the influence of errors we use the idea of a Gaussain window.  
 
The Gaussian window is the previous covariance for the blob, enlarged by some 
"uncertainty" covariance.  The uncertainty captures the possible loss of information 
during the time from the most recent observation.  
 
Our Gaussian blob is  
  

Position: 
  

! 

! 
µ t =

µi

µ j

" 

# 
$ 

% 

& 
'  Size : 

! 

Ct =
" i
2 " ij

2

" ij
2 " j

2

# 

$ 
% 

& 

' 
(   along with CFt.  

 
Let us represent the estimated blob at time t as:  

! 

ˆ µ t , 

! 

ˆ C t  
Let us estimate the predicted feature vector at time t as:   

! 

! 
µ t
*, 

! 

Ct
*  

 
We will compute the estimated blob from by multiplying the detected pixels by a 
Gaussian mask determined from the predicted blob. The Covariance is multiplied by 
2 to offset the fact that we will use mask to estimate a new covariance.  
 
 Gaussian Mask:    

! 

G( ! µ t
*,2Ct

* ) 
 
Detected target pixels:  
 

 

! 

t(i, j)" ht (c(i, j))
h(c(i, j))

# e
$
1
2

i
j
% 

& 
' 
( 

) 
* $

µ i

µ i

% 

& 
' 

( 

) 
* 

% 

& 
' 

( 

) 
* 

T

2Ct
*–1 i

j
% 

& 
' 
( 

) 
* $

µi

µi

% 

& 
' 

( 

) 
* 

% 

& 
' 

( 

) 
* 

 

 
We then estimate the new position and covariance as before:  
 

First moments:   

! 

µi =
1
S i=l

r

" t
j=t

b

" (i, j) # i   

! 

µ j =
1
S i=l

r

" t
j=t

b

" (i, j) # j  
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Second Moments:   

! 

" i
2 =
1
S i=l

r

# t
j=t

b

# (i, j) $ (i %µi )
2 

    

! 

" j
2 =
1
S i=l

r

# t
j=t

b

# (i, j) $ ( j %µ j )
2  

    

! 

" ij
2 =
1
S i=l

r

# t
j=t

b

# (i, j) $ (i %µi ) $ ( j %µ j ) 

 
 

Position: 
  

! 

! ˆ µ t =
µi

µ j

" 

# 
$ 

% 

& 
'  Size : 

! 

ˆ C t =
" i

2 " ij
2

" ij
2 " j

2

# 

$ 
% 

& 

' 
(  

 

3.3. Temporal Prediction 
 
The scene evolves.  Targets move.  
 
In the absence of a temporal model, we can estimate the vector at time t from a 
vector at t–∆t.  We will call this an order zero model.  
 
   

! 

! 
µ t

* " ˆ µ t#$t  
 
If we have a temporal model, we can estimate 
 
 

  

! 

! 
µ t

* " ˆ µ t#$t +$t % d
ˆ µ t#$t
dt

 

 
To account for loss in precision of the blob size and position, we add a covariance 
 
  

! 

Ct
* = ˆ C t"#t +Q#t  

 
If we have a temporal model, we can also include this. We will see this in a minute.  
 
We then use the predicted position and size to compute a new predicted ROI for the 
next time step.  
  
3.4. Managing Lost Targets 
 
Targets can disappear due to occlusion or lost tracking.   For stability we accumulate 
confidence of targets over time.  
 
 CFt = CFt–∆t + 

! 

S
(b " t)(r " l)

 – CFmin  
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 if CFt > CFmax then CFt := CFmax 
 
CFmin is the minimum required average probability per pixel to detect a target.  
 
 If  CFt ≤ 0 then a target is removed.  
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4. The Kalman Filter 
 
Three key steps characterise Bayesian estimation problems (including Kalman 
filters).  
 
1) A process model:  The process model predicts the state vector at time t given the 
estimate at time t-∆t:   
 
 Xt

*  = argmax { p(Xt
* | Xt–∆t)} 

 
2) A sensor model: For each sensor, a predicted sensor signal Yt

* is generated based 
on current the estimated system state Xt

*.  
 
 Yt

*  = argmax{p(Yt | Xt
*)}.  

 
3) Re-estimation: A new estimated value, Xt is computed based on information 
provided by the  difference between the predicted and observed sensor values.  
 
 Xt  = argmax{p(Xt | Xt

*, Yt –Yt
*)} 

 
The Kalman filter uses a linear dynamic model to provide these estimates. That is, the 
process model and sensor models are represented by linear equations. A fixed time 
step and previously estimated derivative values are used to estimate the current value 
of the state variables. A quadratic form this same dynamic equation is used to predict 
the error of the state vector.  
 
A simple zeroth order Kalman filter may be used to track bodies, faces and hands in 
video sequences. In this model, targets properties are represented by a "state vector" 
composed of position, scale and orientation (x, y, σ, θ).  A 4x4 covariance matrix is 
associated with this vector to represent correlations in errors between parameters. 
Although prediction does not change the estimated position, it does enlarge the 
uncertainties of the position and size of the expected target.  The expected size 
provides bounds on the sample rate, as we limit the sample rate so that there are at 
least 8 pixels across an expected target.  
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4.1. State Vector  
 
The target state vector, 

! 

ˆ X t is composed of the position, scale and orientation of the 
target. 
 

 

! 

ˆ X t =

x
y
s
"

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

 

 
where  x, y are the position of the target in pixels 
 s is the size or scale of the target, and  
 θ  is the image plane orientation of the target.  
 
In the case of a first order filter, each of the parameters is accompanied by first 
temporal derivative. 
 

 

! 

ˆ X t =

x
˙ x 
y
˙ y 
s
˙ s 
"
˙ " 

# 

$ 

% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 
( 
( 
( 
( 
( 

 

 
Where the dot indicates temporal derivative.  
 
 

! 

˙ x = "x
"t

 

 
The Kalman filter equations are able to use information from the difference of 
observed and predicted state to estimate the temporal derivatives.  
 
4.2. Confidence and Uncertainty 
 
The state vector is accompanied by a covariance matrix and a confidence factor.  The 
confidence factor is an integer between 0, and a maximum confidence value.  
 
 CFt  ∈  [0, CFmax] 
 
The position uncertainty (or precision) is the covariance matrix for the state vector 
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! 

Pt =

" xx
2 " xy

2 " xs
2 " x#

2

" yx
2 " yy

2 " ys
2 " y#

2

" sx
2 " sy

2 " ss
2 " s#

2

"#x
2 "#y

2 "#s
2 "##

2

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

 

 
For the case of a first order filter, this matrix becomes 8 by 8 with covariance 
between all terms.  
 
For each target, at each time, t, the tracker maintains an estimated state

! 

ˆ X t  as well as 
its precision 

! 

ˆ P t   and confidence factor, CFt. Based on a previous state and precision 

! 

ˆ X t , 

! 

ˆ P t  and CFt as well as the observation  

! 

ˆ P t   from detection function  accompanied by 
the observed precision Py, and detection confidence CFy.  
 
 

! 

ˆ X t , ˆ P t ,CFt = F{Xt+"t
* ,Pt+"t

* ,CFt#"t ,Y , Py,CFy}  
 
Given a target at time t-∆t, the prediction equations predict its new position, and 
validation gate at time t. The general form of the prediction equations are :  
 
 

! 

Xt
* := "(#t) ˆ X t$#t + R  

 

! 

Pt
* := "(#t) ˆ P t$#t"(#t)T +Qx    

 
These equations are a linear estimation of movement based on a Taylor series 
approximation.  
 
The term R is a residue that represents higher order (non-estimated) derivatives. This 
expected value of this term is zero and thus R is commonly omitted.  The second 
moment of R represents the uncertainty due to accelerations (and higher order 
derivatives). Thus second moments, Q, estimates the loss of precision due to higher 
order terms.  
 
 Q = E {R RT}  
 
When included in the prediction, the term Q provides to an additive growth in the 
validation gate that is translated to the search region. When a target is detected, this 
growth is disappears in the update phase. However if no target is detected, the result 
is that the validation gate (and thus the region of interest) grows with each frame until 
the target is re-acquired or until the target is declared lost. 
 
For a first order filter, the prediction matrix ϑ(∆t) predicts new values as a function 
of the time step and the estimated derivatives. 
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! 

"(#t) =

1 #t 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 #t 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 #t 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 #t
0 0 0 0 0 0 0 1

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
) 
) 
) 
) 
) 
) 

 

 
In the case of face tracking, we generally assume that face accelerations are too rapid 
to be estimated. Thus we may estimate only face position (order 0 tracking) or 
position and velocity (order 1 tracking). In this case, the prediction matrix, ϕ(∆t), 
becomes a trivial identity matrix:  
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In this case our prediction equations are reduced to 
 
 

! 

Xt
* = ˆ X t–"t   

 

! 

Pt
* = ˆ P t–"t +Qx   

  
A validation gate provides a region of interest (ROI), which serves to limit estimation 
to the region where the target can be detected.  For face detection, this region of 
interest specifies a range of positions and scales and possibly orientations at which 
the target may be sought.  This greatly accelerates processing by avoiding processing 
unnecessary pixels.  
 
 ROI = (xmin, xmax,  ymin, ymax, smin, smax, θmin, θmax) 
 
The ROI is computed using the scale to define the width and height of a rectangular 
region over which the target will be sought. A ROI  based on three standard 
deviations reasonable size search region. Such a ROI is defined can be defined as  
 
 xmin = xt

 – 3σxx  
 xmax = xt

 + 3σxx  
 ymin = yt

 – 3σyy 

 ymax = yt
 + 3σyy 

 smin =  st
 – 3σss 

 smax =  st
 + 3σss 

 smin =  st
 – 3σss 

 smax =  st
 + 3σss 

 θmin =  θt
 – 3σss 
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 θmax =  θt
 + 3σss 

 
This can then be used to drive face detection process using a cascade of linear 
classifiers. The resulting face location is noted as the observed location  
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The difference between the predicted and observed face locations is known as the 
innovation:  
 
  Innovation: 

! 

(Yt – Xt
* ) 

 
The resulting face location is accompanied by an estimate of its precision, essentially 
scale of the scale at which the face was detected, σk.  For scale uncertainty, we 
propose a value of σs = √2. This corresponds to one level of a binomial pyramid. 
Alternate values can be used depending on the observed uncertainty in size.  For the 
orientation uncertainty, we propose a fixed value, determined from observing 
examples of faces, σθ.  This scale becomes the observed uncertainty: Py 

 

 

! 

Py =

" k
2 0 0 0
0 " k

2 0 0
0 0 " k

2 0
0 0 0 "#

2

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

 

 
4.3. State Estimation 
 
This scale is used to update the precision of the face position estimate. The estimated 
state vector is updated by using the difference between predicted and estimated 
position as an "innovation".  In the case of the 0th order filter, the equations are 
relatively simple. We first compute a Kalman "Gain matrix:  
 
 

! 

K = Pt
*(Pt

* – Py )
"1 

 
from this we can compute the following update equations:  
 
 

! 

ˆ X t = Xt
* + K(Yt – Xt

* ) 
 

! 

ˆ P t = Pt
* – KPt

* 
  
The resulting algorithm in the case of a 1st order filter, a transformation matrix, 

! 

Hx
y  

used to project X onto the observed variables Y.  


