
Computer Vision
MSc Informatics option GVR

James L. Crowley

Fall Semester 15 November 2012
Lesson 6

 Scale Space and Pyramids, Detection and Tracking

Lesson Outline:

1. Image Scale Space...2

1.1. Continuous Scale Space...2
1.2. Discrete Scale Space - Scale invariant impulse response.3
1.3. Spatial Resampling..3
1.4. Using the Pyramid to compute image derivatives5
1.5. Color Opponent Scale Space ...6

2. Pixel Level Detection using Color and Appearance...8
2.1. Histograms of Receptive Fields ...9

3. Gaussian Blob Tracking ..10
3.1. Moment Calculations for Blobs ...10
3.2. Bayesian Estimation ..12
3.3. Temporal Prediction ..13
3.4. Managing Lost Targets..13

4. The Kalman Filter ...15
4.1. State Vector...16
4.2. Confidence and Uncertainty ..16
4.3. State Estimation ..19

 6-2

1. Image Scale Space
1.1. Continuous Scale Space.

 Let P(x, y) be an image of size W columns by R rows.
 Let G(x, y, σ) by a Gaussian function of scale σs

Image Scale space is a 3D continuous space P(x, y, s)

 P(x, y, s) = P* G(x, y, 2s)

y

x
x

Sca le
(Resolution)

Scale space:
 Separates global structure from fine detail.
 Provides context for recognition.
 Can provides local descriptions (features) of the image that are invariant to
position, orientation and scale.

Note that the scale axis (s) in scale space is logarithmic

 s = Log2(σ) = Log2(2s)

A logarithmic scale axis is necessary for scale equivariance.
The appearance of a pattern in the image results in a unique structure in P(x, y, s).
If a shape in an image is made larger by D = 2d

 p(x,y) -> p(x2d, y2d)

Then the scale space projection of appearance is shifted by s in scale.

 P(x,y,s+d) = p(x2d, y2d) * G(x2s+d, y2 s+d, 2 s+d)

This structure is "equivariant" in position, scale and rotation meaning that the
structure has the same form, only shifted in the scale axe.

Translate the pattern by ∆x, ∆y and the structure translates by ∆x, ∆y in P(x, y, s).
Rotate by θ in x, y and the structure rotates by θ in P(x, y, s).
Scale by a factor of 2s, and the structure translates by ∆s in P(x, y, s).

 6-3

1.2. Discrete Scale Space - Scale invariant impulse response.

In a computer, we need to discretize (sample) the axes x, y, and s.

Let P(x, y) is an image array of size WxH pixels, where (x, y) are integers,

We propose to sample scale with a step size of ∆σ = 21/2 so that σk=2k/2
For k=0, to K.

σ0=1 is the smallest scale that we can represent.

At k=0 σ0=20/2=1.

K is the largest scale possible: K=2Log2(min(W, H))
For larger K the scale parameter σ is larger than the image.

1.3. Spatial Resampling

Because each level of the Gaussian Space has been smoothed by convolution with a
Gaussian low pass filter, it is possible to resample the image with a step size that
grows with the scale of the Gaussian.

For example, we can use

 ∆xk = 2(k-1)/2

With only minimal alliassing.

The result an identical impulse response at each level.
This property is called “scale invariance”.

Diagonal, Square root of two Sampling

With σk=2k/2 the impulse response doubles ever two levels. What happens on the
even levels?

 ∆x = 2(k-1) /2 = (√2)k-1

for k odd, ∆xk

 = {1, 2, 4, 8…}
for k even, ∆xk = {√2, 2√2, 4√2, 8√2, …}

Problem : How can we sample an image at ∆x=√2?

 6-4

Solution: Sample along diagonals!

How ? with the diagonal sampling operator S√2{}

For k even, the √2 resampling operator, S√2

k{}, selects even columns of even rows
and odd columns of odd rows.

For k odd, diagonal sample operator eliminates every second column (starting with
even columns on even rows and odd columns on odd rows). For k odd, resampling
eliminates every second row (odd rows).

!

S
2
k {P{x, y)} =

P(x, y) if (x + y)2 Mod 2k-1 = 0
0 otherwise

"

$

With root 2 sampling, the number of samples is reduced by half every level.
(Normally with S=2 sampling, it would be reduced by 4).

This is illustrated with the following table.

 k sk=2k/2 ∆xk=2(k-1)/2 Columns Rows Samples
 0 1 1 W W N
 1 √2 1 W W N
 2 2 √2 W/2 W N/2
 3 2√2 2 W/2 W/2 N/4
 4 4 2√2 W/4 W/2 N/8
 5 4√2 4 W/4 W/4 N/16
 6 8 4√2 W/8 W/4 N/32
 7 8√2 8 W/8 W/8 N/64
 8 16 8√2 W/16 W/8 N/128

 6-5

For an image of size N=WxH, number of samples, if we disregard level k=0, then
the pyramid has P samples.

 P = N x (1 + ½ + ¼ + …) = 2N

But note that the for the last few levels, σk > Min(W, H), and the level is dominated
by boundary effects and not usable.

This is true when Min(W, H) < 2(k-1)/2

1.4. Using the Pyramid to compute image derivatives

Last week we saw thatthe derivatives can be computed by convolving the image with
derivatives of Gaussians

!

Px (x, y) " P *Gx (x, y,#)

With the Pyramid, derivatives can be obtained directly by sum and difference of the
resampled pixels.

 Let i = x/∆xk and j= y/∆yk
Then

!

Px (i, j,k) " P(i+1, j,k)#P(i #1, j,k)

!

Py(i, j,k) " P(i, j +1,k)#P(i, j #1,k)

!

Pxx (i, j,k) " P(i+1, j,k)# 2P(i, j,k)+P(i #1, j,k)

!

Pyy(i, j,k) " P(i, j +1,k)# 2P(i, j,k)+P(i, j #1,k)

!

Pxy(i, j,k) " P(i+1, j +1,k)#P(i #1, j +1,k)#P(i+1, j #1,k)+P(i #1, j #1,k)

These are sometimes referred to as "Receptive Fields"

Laplacien:

!

"2P(x, y,k) = P *"2G(x, y,# k) = Pxx (x, y,k)+Pyy(x, y,k)

For a pyramid we can use the diffusion Equation to show:

!

"2Gx (x, y,#) =Gxx (x, y,#)+Gyy(x, y,#) =
$G(x, y,#)

$#

As a consequence: ∇2G(x, y, σ) ≈ G(x, y, σ1) – G(x, y, σ

2
)

This typically requires σ1≥ 2 σ2

Thus it is common to use:

 ∇2P(x, y, k) ≈ P(x, y, k) – P(x, y, k–1)

 6-6

1.5. Color Opponent Scale Space

In lesson 3 we saw that a color opponent space was useful for illumination invariance

 (R, G, B) ⇒ (L, C1, C2)

!

L
1C
2C

"

$
$ $

%

&

'
' '

=

0.33 0.33 0.33
(0.5 (0.5 1
0.5 (0.5 0

"

$
$ $

%

&

'
' '

R
G
B

"

$
$ $

%

&

'
' '

This representation separates luminance and chrominance.

RGB B-W R-G R+G-B

Color opponent space can be used to build receptive fields that can be steered in color

!

L
1C
2C

"

$
$ $

%

&

'
' '

=

0.33 0.33 0.33
(0.5 (0.5 1
0.5 (0.5 0

"

$
$ $

%

&

'
' '

)1R
)2G
)3B

"

$
$ $

%

&

'
' '

 6-7

We then compute 3 pyramids : L(x, y, k), C1(x, y, k), and C2(x, y, k),

This gives us a feature vector for appearance:

!

!
A (x, y,k) =

Gx
L" k

GC1" k

GC2" k

Gx
C1" k

Gx
C2" k

Gxx
L" k

Gxy
L" k

Gyy
L" k

$

%
%
%
%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
(
(
(

This can be generalized to include multiple scales.

 6-8

2. Pixel Level Detection using Color and Appearance

Recall from Lecture 3 that we used Baye’s Rule and histograms to determine the
probability that a pixel was skin. Probabilities can be grouped into “blobs” and
tracked with a Bayesian Tracker.

Reminder:
Skin pigment is generally always the same color. Skin chrominance is invariant with
illumination intensity.

 Chrominance :

!

c1 = r =
R

R+G + B

!

c2 = g =
G

R+G + B

We can map this to N+1 values between 0 and N

 c1 = trunc(N ·
R

R+G+B) c2 = trun(N ·
G

R+G+B)

From Bayes rule:

!

p(target | ! c (i, j))= p(! c (i, j) | target)p(target)
p(! c (i, j))

=

1
M k

hk (
! c (i, j))M k

M
1
M

h(! c (i, j))
=

hk (
! c (i, j))

h(! c (i, j))

We can use this to convert each color pixel c(i,j) to a probability, p(i,j), by table
lookup.

This approach can be generalized for other local features.
For example, the vector of Gradient Derivatives.

!

p(i, j) = p(target |
!
A (i, j)) =

hk (
!
A (i, j))

h(
!
A (i, j))

 6-9

2.1. Histograms of Receptive Fields

This method can be generalised to ANY vector of features. For example, the
appearance of a neighborhood given by the receptive field vector.

!

!
V (i, j;" i ,#i) = P(i,j) * (Gx, Gxx, Gxy, Gyy) at σi and θi.

ATTENTION. The histogram must have sufficient samples M.

 M ≥ 10 Q ≥ 10 ND.

For the above example: D = 4.

Here is a table of numbers of cells in a histogram of D dimensions of N values.

 N \ d 1 2 3 4 5 6
2 21 22 23 24 25 26
4 22 24 26 28 210 =1 Kilo 212 =2 Kilo
8 23 26 29 212 215 218
16 24 28 212 216 220 = 1 Meg 224 = 4 Meg
32 25 210 =1 Kilo 215 220 = 1 Meg 225 230 = 1 Gig
64 26 212 218 224 230 = 1 Gig 236
128 27 214 221 = 2 Meg 228 235 242 =2 Tera
256 28 216 224 232 = 2 Gig 240 = 1 Tera 248

Consider the chromatic receptive fields normalized in scale and orientation σi and θi.

 P

→

σ,θ = (Px
L, Px

C1, Px
C2, Pxx

L, Pxy
L, Pxx

C1, Pxx
C2)

 D= 7.

 p(objet(i,j) | V

→
(i,j)) =

!

p(
!
V (i, j) | object(i, j)

p(object(i, j))
p(
!
V (i, j)≈

!

ho(
!
V (i, j))

h(
!
V (i, j))

 6-10

3. Gaussian Blob Tracking

To construct a Bayesian tracker, we need to represent clouds of pixels with high
probability of being a target. To do this we represent such clouds as “Gaussian
Blobs”.

Gaussian blobs express a region in terms of moments.
Confidence is the sum (mass) of the detection probability pixels, t(i,j).
Position is center of gravity.
Size is the second moment (covariance).

We use some form of "a priori" estimation to estimate a Region of Interest (ROI) for
the blob. Let us represent the ROI as a rectangle : (t,l,b,r)

 t - "top" - first row of the ROI.
 l - "left" - first column of the ROI.
 b - "bottom" - last row of the ROI
 r - "right" -last column of the ROI.

(t,l,b,r) can be seen as a bounding box, expressed by opposite corners (l,t), (r,b)

3.1. Moment Calculations for Blobs

Given a target probability image t(i,j) and a ROI (t,l,b,r):

 Sum:

!

S =
i=l

r

" t
j=t

b

" (i, j)

We can estimate the "confidence" as the average detection probability:

 Confidence:

!

CF =
S

(b " t)(r " l)

First moments:

!

µi =
1
S i=l

r

" t
j=t

b

" (i, j) # i

!

µ j =
1
S i=l

r

" t
j=t

b

" (i, j) # j

 Position is the center of gravity: (µi, µj)

Second Moments:

!

" i
2 =
1
S i=l

r

t
j=t

b

(i, j) $ (i %µi)
2

!

" j
2 =
1
S i=l

r

t
j=t

b

(i, j) $ (j %µ j)
2

 6-11

!

" ij
2 =
1
S i=l

r

t
j=t

b

(i, j) $ (i %µi) $ (j %µ j)

These compose the covariance matrix:

!

C =
" i
2 " ij

2

" ij
2 " j

2

$
%

&

'
(

The principle components (λ1, λ2) determine the length and width.
The principle direction determines the orientation of the length.
We can discover these by principle components analysis.

!1!2

!

"C"T =# =
$1
2 0
0 $2

2

%

&
'

(

)
*

where

!

" =
cos(#) sin(#)
$sin(#) cos(#)
%

&
'

(

)
*

The length to width ratio, λ1/λ2, is an invariant for shape.

This suggests a "feature vector" for the blob:

!

x
y
w
h
"

$

%
%
%
%
% %

&

'

(
(
(
(
((

where x= µi, y = µj, w=λ1, h=λ2
 and

!

CF =
S

(b " t)(r " l)

However, for tracking we need to keep explicit the center of gravity and covariance.
Thus we will track:

 Position:

!

!
µ t =

µi

µ j

"

$

%

&
' Size :

!

Ct =
" i
2 " ij

2

" ij
2 " j

2

$
%

&

'
(along with CFt.

 6-12

3.2. Bayesian Estimation

A Bayesian tracker is a recursive estimator, composed of the phases:
Predict, Detect, estimate.
Having "detected a blob", next we need estimate the parameters.

The detection process can contain errors due to missed detection and false detection.
To minimize the influence of errors we use the idea of a Gaussain window.

The Gaussian window is the previous covariance for the blob, enlarged by some
"uncertainty" covariance. The uncertainty captures the possible loss of information
during the time from the most recent observation.

Our Gaussian blob is

Position:

!

!
µ t =

µi

µ j

"

$

%

&
' Size :

!

Ct =
" i
2 " ij

2

" ij
2 " j

2

$
%

&

'
(along with CFt.

Let us represent the estimated blob at time t as:

!

ˆ µ t ,

!

ˆ C t
Let us estimate the predicted feature vector at time t as:

!

!
µ t
*,

!

Ct
*

We will compute the estimated blob from by multiplying the detected pixels by a
Gaussian mask determined from the predicted blob. The Covariance is multiplied by
2 to offset the fact that we will use mask to estimate a new covariance.

 Gaussian Mask:

!

G(! µ t
*,2Ct

*)

Detected target pixels:

!

t(i, j)" ht (c(i, j))
h(c(i, j))

e
$
1
2

i
j
%

&
'
(

)
* $

µ i

µ i

%

&
'

(

)
*

%

&
'

(

)
*

T

2Ct
*–1 i

j
%

&
'
(

)
* $

µi

µi

%

&
'

(

)
*

%

&
'

(

)
*

We then estimate the new position and covariance as before:

First moments:

!

µi =
1
S i=l

r

" t
j=t

b

" (i, j) # i

!

µ j =
1
S i=l

r

" t
j=t

b

" (i, j) # j

 6-13

Second Moments:

!

" i
2 =
1
S i=l

r

t
j=t

b

(i, j) $ (i %µi)
2

!

" j
2 =
1
S i=l

r

t
j=t

b

(i, j) $ (j %µ j)
2

!

" ij
2 =
1
S i=l

r

t
j=t

b

(i, j) $ (i %µi) $ (j %µ j)

Position:

!

! ˆ µ t =
µi

µ j

"

$

%

&
' Size :

!

ˆ C t =
" i

2 " ij
2

" ij
2 " j

2

$
%

&

'
(

3.3. Temporal Prediction

The scene evolves. Targets move.

In the absence of a temporal model, we can estimate the vector at time t from a
vector at t–∆t. We will call this an order zero model.

!

!
µ t

* " ˆ µ t#$t

If we have a temporal model, we can estimate

!

!
µ t

* " ˆ µ t#$t +$t % d
ˆ µ t#$t
dt

To account for loss in precision of the blob size and position, we add a covariance

!

Ct
* = ˆ C t"#t +Q#t

If we have a temporal model, we can also include this. We will see this in a minute.

We then use the predicted position and size to compute a new predicted ROI for the
next time step.

3.4. Managing Lost Targets

Targets can disappear due to occlusion or lost tracking. For stability we accumulate
confidence of targets over time.

 CFt = CFt–∆t +

!

S
(b " t)(r " l)

 – CFmin

 6-14

 if CFt > CFmax then CFt := CFmax

CFmin is the minimum required average probability per pixel to detect a target.

 If CFt ≤ 0 then a target is removed.

 6-15

4. The Kalman Filter

Three key steps characterise Bayesian estimation problems (including Kalman
filters).

1) A process model: The process model predicts the state vector at time t given the
estimate at time t-∆t:

 Xt

* = argmax { p(Xt
* | Xt–∆t)}

2) A sensor model: For each sensor, a predicted sensor signal Yt

* is generated based
on current the estimated system state Xt

*.

 Yt

* = argmax{p(Yt | Xt
*)}.

3) Re-estimation: A new estimated value, Xt is computed based on information
provided by the difference between the predicted and observed sensor values.

 Xt = argmax{p(Xt | Xt

*, Yt –Yt
*)}

The Kalman filter uses a linear dynamic model to provide these estimates. That is, the
process model and sensor models are represented by linear equations. A fixed time
step and previously estimated derivative values are used to estimate the current value
of the state variables. A quadratic form this same dynamic equation is used to predict
the error of the state vector.

A simple zeroth order Kalman filter may be used to track bodies, faces and hands in
video sequences. In this model, targets properties are represented by a "state vector"
composed of position, scale and orientation (x, y, σ, θ). A 4x4 covariance matrix is
associated with this vector to represent correlations in errors between parameters.
Although prediction does not change the estimated position, it does enlarge the
uncertainties of the position and size of the expected target. The expected size
provides bounds on the sample rate, as we limit the sample rate so that there are at
least 8 pixels across an expected target.

 6-16

4.1. State Vector

The target state vector,

!

ˆ X t is composed of the position, scale and orientation of the
target.

!

ˆ X t =

x
y
s
"

$

%
%
%
%

&

'

(
(
(
(

where x, y are the position of the target in pixels
 s is the size or scale of the target, and
 θ is the image plane orientation of the target.

In the case of a first order filter, each of the parameters is accompanied by first
temporal derivative.

!

ˆ X t =

x
˙ x
y
˙ y
s
˙ s
"
˙ "

$

%
%
%
%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
(
(
(

Where the dot indicates temporal derivative.

!

˙ x = "x
"t

The Kalman filter equations are able to use information from the difference of
observed and predicted state to estimate the temporal derivatives.

4.2. Confidence and Uncertainty

The state vector is accompanied by a covariance matrix and a confidence factor. The
confidence factor is an integer between 0, and a maximum confidence value.

 CFt ∈ [0, CFmax]

The position uncertainty (or precision) is the covariance matrix for the state vector

 6-17

!

Pt =

" xx
2 " xy

2 " xs
2 " x#

2

" yx
2 " yy

2 " ys
2 " y#

2

" sx
2 " sy

2 " ss
2 " s#

2

"#x
2 "#y

2 "#s
2 "##

2

$

%

&
&
&
&

'

(

)
)
)
)

For the case of a first order filter, this matrix becomes 8 by 8 with covariance
between all terms.

For each target, at each time, t, the tracker maintains an estimated state

!

ˆ X t as well as
its precision

!

ˆ P t and confidence factor, CFt. Based on a previous state and precision

!

ˆ X t ,

!

ˆ P t and CFt as well as the observation

!

ˆ P t from detection function accompanied by
the observed precision Py, and detection confidence CFy.

!

ˆ X t , ˆ P t ,CFt = F{Xt+"t
* ,Pt+"t

* ,CFt#"t ,Y , Py,CFy}

Given a target at time t-∆t, the prediction equations predict its new position, and
validation gate at time t. The general form of the prediction equations are :

!

Xt
* := "(#t) ˆ X t$#t + R

!

Pt
* := "(#t) ˆ P t$#t"(#t)T +Qx

These equations are a linear estimation of movement based on a Taylor series
approximation.

The term R is a residue that represents higher order (non-estimated) derivatives. This
expected value of this term is zero and thus R is commonly omitted. The second
moment of R represents the uncertainty due to accelerations (and higher order
derivatives). Thus second moments, Q, estimates the loss of precision due to higher
order terms.

 Q = E {R RT}

When included in the prediction, the term Q provides to an additive growth in the
validation gate that is translated to the search region. When a target is detected, this
growth is disappears in the update phase. However if no target is detected, the result
is that the validation gate (and thus the region of interest) grows with each frame until
the target is re-acquired or until the target is declared lost.

For a first order filter, the prediction matrix ϑ(∆t) predicts new values as a function
of the time step and the estimated derivatives.

 6-18

!

"(#t) =

1 #t 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 #t 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 #t 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 #t
0 0 0 0 0 0 0 1

$

%

&
&
&
&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)
)
)
)

In the case of face tracking, we generally assume that face accelerations are too rapid
to be estimated. Thus we may estimate only face position (order 0 tracking) or
position and velocity (order 1 tracking). In this case, the prediction matrix, ϕ(∆t),
becomes a trivial identity matrix:

!

" =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

In this case our prediction equations are reduced to

!

Xt
* = ˆ X t–"t

!

Pt
* = ˆ P t–"t +Qx

A validation gate provides a region of interest (ROI), which serves to limit estimation
to the region where the target can be detected. For face detection, this region of
interest specifies a range of positions and scales and possibly orientations at which
the target may be sought. This greatly accelerates processing by avoiding processing
unnecessary pixels.

 ROI = (xmin, xmax, ymin, ymax, smin, smax, θmin, θmax)

The ROI is computed using the scale to define the width and height of a rectangular
region over which the target will be sought. A ROI based on three standard
deviations reasonable size search region. Such a ROI is defined can be defined as

 xmin = xt

 – 3σxx
 xmax = xt

 + 3σxx
 ymin = yt

 – 3σyy

 ymax = yt
 + 3σyy

 smin = st
 – 3σss

 smax = st
 + 3σss

 smin = st
 – 3σss

 smax = st
 + 3σss

 θmin = θt
 – 3σss

 6-19

 θmax = θt
 + 3σss

This can then be used to drive face detection process using a cascade of linear
classifiers. The resulting face location is noted as the observed location

!

Yt =

x
y
s
"

$

%
%
%
%

&

'

(
(
(
(

The difference between the predicted and observed face locations is known as the
innovation:

 Innovation:

!

(Yt – Xt
*)

The resulting face location is accompanied by an estimate of its precision, essentially
scale of the scale at which the face was detected, σk. For scale uncertainty, we
propose a value of σs = √2. This corresponds to one level of a binomial pyramid.
Alternate values can be used depending on the observed uncertainty in size. For the
orientation uncertainty, we propose a fixed value, determined from observing
examples of faces, σθ. This scale becomes the observed uncertainty: Py

!

Py =

" k
2 0 0 0
0 " k

2 0 0
0 0 " k

2 0
0 0 0 "#

2

$

%

&
&
&
&

'

(

)
)
)
)

4.3. State Estimation

This scale is used to update the precision of the face position estimate. The estimated
state vector is updated by using the difference between predicted and estimated
position as an "innovation". In the case of the 0th order filter, the equations are
relatively simple. We first compute a Kalman "Gain matrix:

!

K = Pt
*(Pt

* – Py)
"1

from this we can compute the following update equations:

!

ˆ X t = Xt
* + K(Yt – Xt

*)

!

ˆ P t = Pt
* – KPt

*

The resulting algorithm in the case of a 1st order filter, a transformation matrix,

!

Hx
y

used to project X onto the observed variables Y.

