
Intelligent Systems: Reasoning and Recognition 
 

James L. Crowley 
 
ENSIMAG 2 / MoSIG M1 Second Semester 2013/2013 
 
Lesson 17 12 april 2013 
 
 

Discriminant Functions 

Notation.............................................................................2 

Bayesian Classification......................................................3 

Quadratic Discrimination...................................................4 
Discrimination using Log Likelihood ........................................... 6 
Example for K > 2 and D > 1........................................................ 7 
Canonical Form for the discrimination function ........................... 8 
Noise and Discrimination ............................................................. 9 
Decision Surfaces for different Noise assumptions ....................... 11 
Two classes with equal means ...................................................... 12 

 
 
  
Sources Bibliographiques :  
 "Pattern Recognition and Machine Learning", C. M. Bishop, Springer Verlag, 2006.  
"Pattern Recognition and Scene Analysis", R. E.  Duda and P. E. Hart, Wiley, 1973.  



Discriminant Functions Lesson 17 

 17-2 

Notation 
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

E   An observation. An event.  
Ck   The class  k.   
k   Class index 
K   Total number of classes 
ωk   The statement (assertion) that E  ∈ Ck 
P(ωk) =P(E ∈Ck) Probability that the observation E is a member of the class k. 
   Note that p(ωk) is lower case.  
p(X)   Probability density function for X 
p(  

! 

! 
X )   Probability density function for    

! 

! 
X 

 
 

p(  

! 

! 
X 

 
| ωk)    Probability density for   

! 

! 
X 

  
the class k. ωk  = E  ∈ Tk.  
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Bayesian Classification  
 
Our problem is to build a box that maps a set of features   

! 

! 
X  from an Observation, E 

into a class Ck from a set of K possible Classes.  
 

 

Class(x1,x2, ..., x d)} !̂

x1
x2
...
xd

 
 
Let ωk be the proposition that the event belongs to class k: ωk = E ∈ Ck 

 
 ωk Proposition that event E  ∈ the class k 
 
In order to minimize the number of mistakes, we will maximize the probability that 

! 

"k # E $ Tk  
 

 
  

! 

ˆ " k = arg#max
k

Pr("k |
! 
X ){ }  

We will call on two tools for this:  
 
1) Baye's Rule : 
 
 

  

! 

P("k |
! 
X ) =

p(
! 
X |"k )
p(
! 
X )

P("k ) 

 
2) Normal Density Functions  
 

 
    

! 

p(
! 
X ) = N (

! 
X ; ! µ ,  ") =

1

(2#)
D
2 det(")

1
2

e– 1
2

(
! 
X – ! µ )T "–1 (

! 
X – ! µ )

 

and 

 
    

! 

p(
! 
X |"k ) = N (

! 
X ; ! µ k ,  #k ) =

1

(2$)
D
2 det(#k )

1
2

e– 1
2

(
! 
X – ! µ k )T #k

–1 (
! 
X – ! µ k )
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Quadratic Discrimination 
 
 
The classification function can be decomposed into two parts:  d() and gk(): 
 
   

! 

ˆ " k = d gk

! 
X ( )( )  

 
 g(X 

→
) :  A discriminant function : RD → RK 

 d() :  a decision function    RK → {ωK} 
 
The discriminant is a vector of functions:  
 

 

  

! 

! g (
! 
X ) =

g1(
! 
X )

g2 (
! 
X )
"

gK (
! 
X )

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

 
Quadratic discrimination functions can be derived directly from   

! 

p("k |
! 
X )  

 
 

  

! 

p("k |
! 
X ) =

P(
! 
X |"k )p("k )

P(
! 
X )

 

 
To minimize the number of errors, we will choose k such that   
 
 

  

! 

ˆ " k = arg#max
" k

{
P(
! 
X |"k )p("k )

P(
! 
X )

}  

 
but because P(X)  is constant for all k, it is common to use:  
 
 

  

! 

ˆ " k = arg#max
" k

{P(
! 
X |"k )p("k )}    

or simply that  
 
 

  

! 

ˆ k = arg"max
k

{gk (
! 
X )}  

 
Remember that the confidence is 

  

! 

CFˆ " k
= p( ˆ " k |

! 
X ) =

P(
! 
X | ˆ " k )p( ˆ " k )

P(
! 
X )

 

 
Thus the classifier can be decomposed to a selection among a set of parallel 
discriminant functions.   
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x1

x2

•
•
•

xn

g1

gK

•
•
•

Maxg2

 
 
This is easily applied to the multivariate norm:  
  
     

! 

p(
! 
X |"k ) = N (

! 
X ; ! µ k ,  #k )  

 
or even to a Gaussian Mixture Model 
 

 
    

! 

p(
! 
X |"k ) = #n

n=1

M

$ N (
! 
X ; ! µ n,%n ) 
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Discrimination using Log Likelihood 
 
As a simple example, let D=1  
 
 

 
  

! 

p(X) = N (X;µ," ) =
1

2#"
e– (X$µ )2

2" 2

 

 
The discrimination function takes the form:   
 

 

! 

gk (X) = p(X |"k ) #P("k ) = P("k ) #
1
2$% k

e–
(X&µk )

2

2% k
2

 

 
Note that  

! 

ˆ k = arg"max
k

gk (X){ } = arg"max
k

Log{gk (X)}{ } 

 
because Log{} is a monotonic function.  
  
 

  

! 

ˆ k = arg"max
k

Log{P(#k )N (X;µk ,$ k ){ } 

 

 

! 

ˆ k = arg"max
k

P(#k ) $
1

2%& k

e– (X"µk )2

2& k
2

' 
( 
) 

* ) 

+ 
, 
) 

- ) 
 

  

 

! 

ˆ k = arg"max
k

Log{
1

2#$ k

}+ Log{e– ( X"µk )2

2$ k
2

}+ Log{P(%k )}
& 
' 
( 

) ( 

* 
+ 
( 

, ( 
 

 

 

! 

ˆ k = arg"max
k

"Log{ 2#}" Log{$ k } –
(X "µk )2

2$ k
2 + Log{P(%k )}

& 
' 
( 

) 
* 
+ 
 

 

 

! 

ˆ k = arg"max
k

"Log{# k } –
(X "µk )2

2# k
2 + Log{P($k )}

% 
& 
' 

( 
) 
* 
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Example for K > 2 and D > 1 
 
In the general case, there are D characteristics.  
 

 

  

! 

gk (
! 
X ) = p("k |

! 
X )P("k ) 

 
 
Thus the classifier is a machine that calculates K functions gk(X 

→) 
Followed by a maximum selection.   
 
The discrimination function is    

! 

gk (
! 
X ) = p("k |

! 
X )P("k ) 

 
Choose the class  ωk for which  

  

! 

ˆ k = arg"max
k

gk (
! 
X ){ } = arg"max

k
Log{gk (

! 
X )}{ } 

For a Gaussian (Normal) density function  
 
     

! 

p(
! 
X |"k ) = N (

! 
X ; ! µ k ,  #k )  

 
 

  

! 

Log(p(
! 
X |"k )) = Log( 1

(2#)
D
2 det($k )

1
2

e–1
2
(
! 
X – ! µ k )

T $k
–1 (
! 
X – ! µ k ) ) 

 
 

  

! 

Log(p(
! 
X |"k )) = – D

2
Log(2#)$ 1

2
Log{Det(%k )} –

1
2
(
! 
X – ! µ k )

T %k
–1(
! 
X – ! µ k ) 

 
We can observe that   

! 

"
D
2
Log(2#) can be ignored because it is constant for all k.   

 
The discrimination function becomes:  
 

  
  

! 

gk (
! 
X ) = – 1

2
Log{det("k )} –

1
2
(
! 
X – ! µ k )

T "k
#1(
! 
X – ! µ k )+ Log{p($k )}  

 
Different families of Bayesian classifiers can be defined by variations of this formula.  
This becomes more evident if we reduce the equation to a quadratic polynomial.  
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Canonical Form for the discrimination function 
 
The quadratic discriminant can be reduced to a standard (canonical) form.  
 

  

! 

gk (
! 
X ) = – 1

2
Log{det("k )} –

1
2
(
! 
X – ! µ k )

T "k
#1(
! 
X – ! µ k )+ Log{p($k )}  

 
Let us start with the term   

! 

(
! 
X – ! µ k )

T "k
#1(
! 
X – ! µ k ) .  

 
This can be rewritten as :  
 
   

! 

(
! 
X – ! µ k )

T "k
#1(
! 
X – ! µ k )  =   

! 

! 
X T"k

#1 ! X –
! 
X T"k

#1 ! µ k #
! 
µ k

T"k
#1 ! X + ! µ k

T"k
#1 ! µ k  

 
We note that   

! 

! 
X T"k

#1 ! µ k =
! 
µ k

T"k
#1 ! X  

and thus :   

! 

"
! 
X T#k

"1 ! µ k "
! 
µ k

T#k
"1 ! X =   

! 

"(2#k
"1 ! µ k )

T ! X  
 
we define:   

! 

! 
W k = "2#k

"1 ! µ k  
to obtain   

! 

"
! 
X T#k

"1 ! µ k "
! 
µ k

T#k
"1 ! X =   

! 

! 
W k

T ! X  

 
Let us also define  

! 

Dk = "
1
2
#k
"1 

 
The remaining terms are constant. Let us defined the constant  
 
 bk = 

  

! 

"
1
2
! 
µ k

T#k
"1 ! µ k " Log{det(#k )}+ Log{p($k )} 

 
which gives a quadratic polynomial  
 

 

  

! 

gk (
! 
X ) =

! 
X T Dk

! 
X +
! 

W k
T ! X + bk  

 
 
where:     

! 

Dk =

! 

"
1
2
Ck

"1  

       

! 

! 
W k = "2#k

"1 ! µ k  
and    bk = 

  

! 

"
1
2
! 
µ k

T#k
"1 ! µ k " Log{det(#k )}+ Log{p($k )} 

 
A set of K discrimination functions gk(  

! 

! 
X ) partitions the space   

! 

! 
X  into a disjoint set of 

regions with quadratic boundaries.  The boundaries are points for which  
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! 

gi(
! 
X ) = gj (

! 
X ) "  gk (

! 
X )#k $ i, j  

 
The boundaries are the functions    

! 

gi(
! 
X )" gj (

! 
X ) = 0  

  

Noise and Discrimination 
 
Under certain conditions, the quadratic discrimination function can be simplified by 
eliminating either the quadratic or the linear term.  
 
If we could perfectly model the universe, then sensor reading would be a predictable 
value,   

! 

! x . The normal density attempts to represent this with the "average" feature   

! 

! 
µ k  

 
 In reality, the features of a class are generally dispersed by un-modeled phenomena.  
These may be effects that are beyond the abilities of the available sensors, or they 
may be effects that we choose to ignore because they are "unimportant".  
 
Although the true variation my not be additive, we will model it as an additive 
random term Nk. The term is random because we are unable to predict it.  
 
 Thus the observed feature is random:   

! 

! 
X = ! x + Nk  

 
For example, the color of your eyes could be predicted from your genetic code, but in 
the absence of a genetic decoder, this becomes random.  
 
In addition, every observation system (or sensor) is subject to some form of sensor 
noise.  This sensor Noise is modeled as an additive random term Ns. Sensor noise is 
generally independent of the class k.  
 
Thus the sensor returns a random feature   

! 

! 
X = ! x +

! 
N k +

! 
N s  

 
The Normal density function represents these two forms of "noise" as a second 
moment of the class, Ck.  
 
Thus   

! 

"k = E{(Nk + Ns )(Nk + Ns )
T}  

 
Depending on the nature of   

! 

! 
N k and

! 
N s  different simplifications are possible.  

 
For example if   

! 

! 
N s  >>   

! 

! 
N k   then the term Σk will be nearly constant for all k.  

In this case, the discrimination function can be reduced to a linear equation.  
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! 

gk (
! 
X ) =

! 
W k

T ! X + bk  
 
This is very useful because there are simple powerful techniques to calculate the 
terms of such an equation.  
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Decision Surfaces for different Noise assumptions  
In the more general case we can not make any assumptions on   

! 

! 
N k  and   

! 

! 
N s    

Depending on the nature    

! 

! 
N k  we may find a variety of different second order decision 

surfaces :   
 
For eaxample (K=2, D=2) 
 
Hyper-sphere :  
 Let Σk = σk2 I  
       and det{Σ1} > det{Σ2}  
 

· ·

Z1 Z2

1
2

 

Hyper-ellipsoid :    
 For  σx12 > σx22 
 and  det{Σ1} > det{Σ2} · ·

Z1 Z2

1
2

 
Hyper-paraboloid :  
 for  σ2x1k=1 >> σ2x1k=2 
 et σ2x2k=1 > σ2x2k=2 · ·

Z1

Z2

1
2

 
Hyper-hyperboloids : 
 

· ·

Z1

Z2

1
2

Z2

 
Hyperplanes.  
 

· Z1
Z21

Z2

2
·

Z1

 
µ 
→

1 = µ 
→

2  and det{Σ1} > det{Σ2} 
 with σ11 = σ22  et σ12 = σ21 = 0.  
 
a hypershere.  
 
  

·
·

Z2

2 ·1 Z1
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Two classes with equal means 
 

 
 

Suppose tht we have 2 classes i, j such that   
 
 µ 

→

i = µ 
→

j  and det{Σ1} > det{Σ2}.  
 
Is it possible to assign an observation to one of the classes? 
 

 gi(X 
→

)  – gj(X 
→

) = 0   
 
takes the form of a sphere with observations assigned to Ci outside the sphere and Cj 
on the inside.   
 

   

! 

gk (
! 
X ) =

! 
X T Dk

! 
X +
! 

W k
T ! X + bk  

 
 
 


