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Kernel Methods 
 
Linear methods are very well suited for use with very high dimensional feature space 
provided that the patterns can be separated by a plane.  
 
Kernel Methods transform a non-linear function into a linear function in a much 
higher dimensional space. Thus they enable linear discriminant methods to be applied 
to a large class of problems where the data are dispersed in a non-linear manner.  
 
Kernel Methods provide an elegant solution for clustering and classifying patterns in 
complex non-linear data by mapping the data into a higher dimensional space where 
the data can be separated by a linear method.  
 

 
 
Kernels make it possible to  
1) Solve the computational problems of high dimensional spaces 
2) Be extended to infinite dimensional spaces 
3) Be extended to non-numerical and symbolic data! 
 
Linear methods are very well suited for use with very high dimensional feature space. 
We can map a quadratic decision space into a linear space by adding additional 
dimensions.  For example, a quadratic surface in a D dimensional space can be 
transformed into a linear surface in a D(D+1)/2 space by  from the D dimensional 
space to a space P > D using a kernel function, K().  
   
For example a D=2 space   

! 

! 
X  can be projected on to D=5 space  

! 

K(
! 
X ) = (x1, x2, x1

2 , x1x2 , x2
2 ) .  

A linear function of   

! 

K(
! 
X ) is quadratic in   

! 

! 
X . 
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Kernel Functions 
 
Formally, a Kernel is a function that returns the inner product of a function applied to 
two arguments.    
 

 
  

! 

f (
! 
X ) = am ym "(

! 
X m ),"(

! 
X )

m=1

M

# + b  

 
The key notion of a kernel method is an inner product space.  
 

  
  

! 

! x , ! z = xd
d=1

D

" zd  

 
A common kernel function as a quadratic mapping of a feature space, φ(x).  
 
   

! 

k(
! 
X 1,
! 
X 2 ) =

! 
" (
! 
X 1)

T ! " (
! 
X 2 ) 

 
Note that the kernel is a symmetric function of its arguments, so that  
 
   

! 

k(
! 
X 1,
! 
X 2 ) = k(

! 
X 1,
! 
X 2 ) 

 
There are a large variety of possible kernel functions that can be used, depending on 
the problem. 
 
example:  Polynomial Kernel: 

 
 
For example, a quadratic kernel in a space where D=2 is 
 
   

! 

k(! x , ! z ) = (! x T ! z )2 = (x1z1 + x2z2 )
2 = (x1

2z1
2 + 2x1z1x2z2 + x2

2z2
2 ) 

 
This can be expressed as an inner product space where 
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! 

"(! x ) = x1
2 + 2x1x2 + x2

2  
 
giving:  
 
   

! 

k(! x , ! z ) =
! 
" (! x )T

! 
" (! z ) 

 
In order to be "valid", a kernel must correspond to a scalar product of some feature 
space.  That is, there must exist a space such that  
 

 
  

! 

k(
! 
X 1,
! 
X 2 ) =

! 
" (
! 
X 1)

T ! " (
! 
X 2 ) = "n(

! 
X 1) #

n=1

N

$ "n(
! 
X 2 ) 

 
A necessary, and sufficient condition that a Kernel function be "valid" is that the 
Gram matrix be positive and semi-definite for all choices of    

! 

{
! 
X m}  

 
The Gram Matrix  (or Grammian) for   

! 

! x  is   

! 

! x T ! x  
 
The Gram Matrix   projects a linear vector   

! 

! x  onto a quadratic surface   

! 

! x T ! x  
 

Gaussian Kernel 
 
The Gaussian exponential is very often used as a kernel function.  
In this case:  
 
 

  

! 

k(! x , ! " x ) = e#
! x # ! " x 
2$ 2  

 
This is often called the Gaussian Kernel. It is NOT a probability density.  
We can see that it is a valid kernel because:  
 
   

! 

! x " ! # x 2 =
! x T ! x " 2 ! x T ! # x +

! 
# x T ! # x  

 
Among other properties, the feature vector can have infinite dimensionality.  
 



Kernel Methods and Support Vector Machines Lesson 21 

 21-5 

Kernel function for Symbolic Data 
 
Kernel functions can be defined over graphs, sets, strings and text! 
 
Consider for example, a non-vectoral space composed of a Set of words S.  
Consider two subsets of S:  A1 ⊂ S and A2 ⊂ S  
 
The can compute a kernel function of A1and A2 using the interesection  
 

   

! 

k(! x , ! " x ) = 2 A1#A2    
 
where |A| denotes the number of elements (the cardinality)  of a set.  
 
Probabilistic generative models tend to be more robust with missing data and data of 
variable length, while Probabilistic Discriminative models tend to give better 
performance and lower cost.  
 
We can combine generative and discriminative models using a kernel. 
 
 Given a generative model p(X) we can define a kernel as:  
 
   

! 

k(! x , ! " x ) = p(! x )p(! " x )  
 
This is clearly a valid kernel because it is a 1-D inner product.   Intuitively, it says 
that two feature vectors, x, are similar if they both have high probability.  
 
We can extend this with conditional probabilities to  
 

 
  

! 

k(! x , ! " x ) =
n=1

N

# p(! x | n)p(! " x | n)p(n) 

 
Two vectors,   

! 

! x , ! " x will give large values for the kernel, and hence be seen as 
similar, if they have significant probability for the same components.  
 
Kernel functions enable application of linear classifiers to non-linear problems.  
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Support Vector Machines 
 
A significant limitation for linear leaning methods is that the kernel function must be 
evaluated for every training point during learning.  
 
An alternative is to use a learning algorithm with sparse support  - that is a uses only 
a small number of points to learn the separation boundary.  
 
A Support Vector Machine (SVM) is such an algorithm.  
 
SVM's are popular for problems of classification, regression and novelty detection.  
The solution of the model parameters corresponds to a convex optimisation problem. 
Any local solution is a global solution.  
 
We will use the two class problem, K=2, to illustrate the principle. Multi-class 
solutions are possible.  
 
Our linear model is for the decision surface is 
 
   

! 

g(
! 
X ) =

! w T"(
! 
X )+ b  

 
Where    

! 

"(
! 
X ) is a feature space transformation that maps a hyper-plane in F 

dimensions into a non-linear decision surfaces in D dimensions.  F >> D 
 
Training data is a set of M training samples    

! 

! 
X m{ }and their indicator variable, 

! 

ym{ }.  
For a 2 Class problem, ym is -1 or +1.  
 
A new, observed point (not in the training data) will be classified using the function  
  

! 

sign(g(
! 
X )), so that a classification of a training sample is correct if  

 
   

! 

ymg(
! 
X m ) > 0  
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Hard-Margin SVMs - Separable Training Data 
 
Let us assume, for the moment, that the data is linearly separable.  
There exists a hyper-plane   

! 

g(
! 
X ) =

! w T"(
! 
X )+ b such that   

! 

ymg(
! 
X m ) > 0  for all m.  

 
Generally there will exist many solutions for separable data.  
For a support Vector Machine, the decision boundary is chosen to maximize the 
margin,  γ.  
 
Recall that the margin, γ is the minimum distance of any sample from the hyper-plane 

 
Bishop p 327 (fig 7.1)  

(Bishop uses y(X) for the discriminant function and tm for the indicator variable.) 
 

What we are going to do is design the decision boundary to that it has aN equal 
distance from a small number of support points.  

 
Bishop p 327 (fig 7.1) 

(Bishop uses y(X) for the discriminant function and tm for the indicator variable.) 
 
 

The distance for a point from the hyper-plane is 
  

! 

g(
! 
X )
! w 

 

 
since we are only interested in points where   

! 

ymg(
! 
X m ) > 0  

 
The distance for the point   

! 

! 
X m  to the decision surface is:  

 
 

  

! 

ymg(
! 
X m )! w 

=
ym (
! w T"(

! 
X m )+ b)
! w 
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We will seek to maximize the margin by solving 
 

 
  

! 

argmax
w,b

1
! w 
min

m
ym (
! w T"(

! 
X m )+ b){ }

# 
$ 
% 

& 
' 
( 
 

 
The factor 

  

! 

1
! w 

 can be removed from the optimization because   

! 

! w  does not depend on 

m.  
 
Direct solution would be very difficult. We will convert this to an equivalent 
problem.  
 
Note that rescaling the problem changes nothing.  Thus we will scale the equation 
such for the sample that is closest to the decision surface (smallest margin):  
 
   

! 

ym (
! w T"(

! 
X m )+ b) =1   that is:     

! 

ymg(
! 
X m ) =1 

 
For all other sample points:  
 
   

! 

ym (
! w T"(

! 
X m )+ b) #1 

 
This is known as the Canonical Representation for the decision hyperplane.  
 
The training sample where   

! 

ym (
! w T"(

! 
X m )+ b) =1 are said to be the "active" 

constraint.   All other training samples are "inactive".  
 
By definition there is always at least one active constraint.  
 
When the margin is maximized, there will be two active constraints.  
 
Thus the optimization problem is to maximize 

  

! 

argmin
w,b

1
2
! w 2

" 
# 
$ 

% 
& 
' 
 subject to the active 

constraints.  
 
The factor of ½ is a convenience for later analysis.  
 
To solve this problem, we will use Lagrange Multipliers, am ≥ 0, with one multiplier 
for each constraint. This gives a Lagrangian function:  
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! 

L( ! w ,b, ! a ) =
1
2
! w 2 " am ym (

! w T#(
! 
X m )+ b)"1{ }

m=1

M

$  

 
Setting the derivatives to zero, we obtain:  
 

 

! 

"L
"w

= 0#  
  

! 

! w = am ym"(
! 
X m )

m=1

M

#  

 

 

! 

"L
"b

= 0#  

! 

amym
m=1

M

" = 0  

 
Eliminating   

! 

! w ,b  from   

! 

L( ! w ,b, ! a ) we obtain :  
 

 
  

! 

L(a) = am
m=1

M

" #
1
2

amanym yn
n=1

M

" k(
! 
X m ,
! 
X n )

m=1

M

"  

 
with constraints:  
 
 am ≥ 0 for m=1, ..., M 
  

 

! 

amym
m"1

M

# = 0  

 
where the kernel function is :    

! 

k(
! 
X 1,
! 
X 2 ) =

! 
" (
! 
X 1)

T ! " (
! 
X 2 ) 

 
The solution takes the form of a quadratic programming problem in D variables (the 
Kernel space).  This would normally take O(D3) computations.  
 
In going to the dual formulation, we have converted this to a dual problem over M 
data points, requiring O(M3) computations.  
This can appear to be a problem, but the solution only depends on a small number of 
points!  
 
To classify a new observed point, we evaluate:  
 

 
  

! 

g(
! 
X ) = am ym

m=1

M

" k(
! 
X ,
! 
X m )+ b  
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The solution to optimization problems of this form satisfy the "Karush-Kuhn-Tucker" 
condition, requiring:  
 
 am ≥ 0 
   

! 

ymg(
! 
X m )"1#  0  

   

! 

am ymg(
! 
X m )"1{ } #  0  

 
For every data point in the training samples,    

! 

! 
X m{ } , either  

 
 am = 0 or    

! 

ymg(
! 
X m ) =1 

Any point for which am = 0 does not contribute to 
  

! 

g(
! 
X ) = am ym

m=1

M

" k(
! 
X ,
! 
X m )+ b  

and thus is not used! (is not active) . 
 
The remaining points, for which am ≠ 0 are called the "Support vectors".  
These points lie on the margin at    

! 

tm y(
! 
X m ) =1  of the maximum margin hyperplane.  

Once the model is trained, all other points can be discarded!  
 
Let us define the support vectors as the set S. 
 
Now that we have solved for S and a, we can solve for b:  
 

we note that :  
  

! 

ym anyn
n"S
# k(

! 
X m ,
! 
X n )+ b

$ 

% 
& 

' 

( 
) =1 

 
averaging over all support vectors in S gives:  
 

 
  

! 

b =
1

NS

ym " anynk(
! 
X m ,
! 
X n )

n#S
$

% 

& 
' 

( 

) 
* 

m#S
$  

 
This can be expressed as minimization of an error function, E∞(z) such that the error 
function is zero if z ≥ 0 and ∞ otherwise.  

 
From Bishop p 331.  
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Soft Margin SVM's - Non-separable training data. 
 
So far we have assumed that the data are linearly separable in   

! 

"(
! 
X ).  

For many problems some training data may overlap.  
 
The problem is that the error function goes to ∞ for any point on the wrong side of 
the decision surface. This is called a "hard margin" SVM.  
 
We will relax this by adding a "slack" variable, Sm for each training sample:  
 
 Sm ≥ 1  
 
We will define  
 
 Sm =0    for samples on the correct side of the margin, and  
   

! 

Sm = ym " g(
! 
X m )   for other samples.  

 
For a sample inside the margin, but on the correct side of the decision surface:  
 
 0 < Sm ≤ 1 
 
For a sample on the decision surface:  
 
  Sm= 1 
 
For a sample on the wrong side of the decision surface:  
 
  Sm  >  1 

 
Soft margin SVM: Bishop p 332 (note use of ξm in place Sm) 

 
This is sometimes called a soft margin.   To softly penalize points on the wrong side, 
we minimize :  
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! 

C Sm +
1
2m=1

M

" ! w 2  

 
where C > 0 controls the tradeoff between slack variables and the margin.  
 
because any misclassified point Sm > 1, the upper bound on the number of 

misclassified points is is 

! 

Sm
m=1

M

" .  

 
C is an inverse factor. (note that C=∞) is the earlier SVM with hard margins.  
 
To solve for the SVM we write the Lagrangian:  
 

 
  

! 

L( ! w ,b, ! a ) =
1
2
! w 2 + C Sm

m=1

M

" # am ymg(
! 
X m )#1+ Sm{ }

m=1

M

" # µmSm
m=1

M

"  

 
The KKT conditions are 
 
 am ≥ 0 
   

! 

ymg(
! 
X m )"1+ Sm #  0  

   

! 

am ymg(
! 
X m )"1+ Sm{ } #  0 

 

! 

µm " 0  
 Sm  ≥  1 
 µmSm  = 0 
 
Solving the derivatives of   

! 

L( ! w ,b, ! a ) for zero gives 
 

 

! 

"L
"w

= 0#  
  

! 

! w = am ym"(
! 
X m )

m=1

M

#  

 

! 

"L
"b

= 0#  

! 

amtm
m=1

M

" = 0  

 
 

! 

"L
"S

= 0#  

! 

am =C "µm  

 
using these to eliminate w, b and {Sm} from L(w, b, a) we obtain 
 

 
  

! 

L(a) = am
m=1

M

" #
1
2

amanym yn
n=1

M

" k(
! 
X m ,
! 
X n )

m=1

M

"   
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This appears to be the same as before, except that the constraints are different.  
 
 0 ≤ am ≤ C 
 

 

! 

am
m=1

M

" ym = 0  

 
(referred to as a "box" constraint). Solution is a quadratic programming problem, 
with complexity O(M3). However, as before, a large subset of training samples have 
am = 0, and thus do not contribute to the optimization.  
 
For the remaining points    

! 

ymg(
! 
X m ) =1" Sm  

 
For samples ON the margin   am < C hence µm > 0 requiring that Sm = 0 
 
For samples INSIDE the margin:  am = C  and Sm ≤ 1 if correctly classified and  Sm > 
1 if misclassified.  
 
as before to solve for b  we note that :  
 

 
  

! 

ym anyn
n"S
# k(

! 
X m ,
! 
X n )+ b

$ 

% 
& 

' 

( 
) =1 

 
averaging over all support vectors in S gives:  
 

 
  

! 

b =
1

NS

ym " anynk(
! 
X m ,
! 
X n )

n#S
$

% 

& 
' 

( 

) 
* 

m#T
$  

 
where T denotes the set of support vectors such that 0 <  am < C.  
 


