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Learning Linear Detectors 
  

Linear Classifiers as Pattern Detectors 
 
Linear classifiers are widely used to define pattern “detectors”.  This is used in 
computer vision, for example to detect faces or publicity logos, or other patterns of 
interest.  
 
In the case of pattern detectors,  K=2.  
 
Class k=1:  The target pattern.  
Class k=2: Everything else.  
 
In the following examples, we will assume that our training data is composed of M 
sample observations {X 

→

m}  where each sample is labeled with an indicator  ym 
  
 ym = +1 for examples of the target pattern (class 1) 
 ym = –1 for all other examples.  
 
A variety of techniques exist to calculate the plane. The best choice can depend on 
the nature of the pattern class as well as the nature of the non-class data.  
 
These include 

1) Vector between center of gravities.  
2) Fisher linear discriminant analysis,  
3) Least Squares estimation 
4) Perceptrons 

  
 In lesson 19 we saw the first two. In this lesson we look at least squares and 
perceptrons.  
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Least squares estimation of a hyperplane 
 
Assume a training set of M labeled training samples {ym, X 

→

m}  
such that  ym=+1  for class 1 and ym  = –1 for class 2.  
 
Our goal is to determine a discriminant function     

! 

g(
! 
X ) =

! 
W T
! 
X + b  

 
which can also be expressed as :   

! 

g(
! 
X ) =

! 
X T
! 

W + b  
 
We seek the "best"   

! 

! 
W . This can eb determined by minimizing a "Loss" function:  

 

 
  

! 

L( ˆ W ) = (ym "
! 
X m

T

m=1

M

# ˆ W )2  

 
To build or function, we  will use the M training samples to compose a matrix X and 
a vector Y.  
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  (D row by M columns) 
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   (M coefficients).  

 
We write   L(W) = (Y – XΤW)Τ (Y – XΤW) 

 
To minimize the loss function, we calculate the derivative and solve for W when the 
derivative is 0.  
  
 

! 

"L(W )
"W

= –2 XΤY + 2 XΤ X W = 0 

 
Thus :   XΤY =  XΤ X W  
   
   W = ( XΤ X)–1  XΤ Y 
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From this classifier an unknown event X 

→
 as  

 
 if    

! 

! 
W T
! 
X  + B > 0  then 

! 

ˆ " 1 else 

! 

ˆ " 2   
 
where "B" is an arbitrary "bias" constant.  
 
We can trade False Positives for False negatives using the bias, B 
 



Linear Classifiers and Boosted Learning Lesson 20 

 17-5 

A Committee of Boosted Classifiers 
 
One of the more original ideas in machine learning the last decade is the discovery of 
a method by to learn a committee of classifiers by boosting.  A boosted committee of 
classifiers can be made arbitrarily good: Adding a new classifier always improves 
performance.  
 
A committee of classifiers decides by voting.  
 

  
 
A feature vector is determined to be in the target class if the majority of classifiers 
vote > 0. Let us define vi as the vote for the nth classifier 
 
For all  i from 1 to I :  If    

! 

! 
W n

T ! X m  + B > 0 then  vn =1 else vn = -1.  
 

 if 

! 

vi
n=1

N

" > 0  then    ω̂1 else  ω̂2  

 
We can represent this with sgn :    
 
 vn = sgn(  

! 

! 
W n

T ! X m +b) 
 
where:  
 

 

! 

sgn(x) =
1 if x > 0  
"1 if  x # 0  
$ 
% 
& 

 

 

 if  
  

! 

sgn(
! 

W n
T ! X m + b)

n=1

N

"   then   ω̂1 else  ω̂2 

  
To learn a boosted committee we iteratively add new classifiers to the committee.  
In each cycle we change the data set and learn a new classifier, Wi  
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The data set will be changed by giving additional weight to improperly classified 
samples. We learn the next class by multiplying the Y labels a weight vector, An.  
 
   

! 

! 
W n = (XTX)"1XT (

! 
A n #
! 
Y )  

 



Linear Classifiers and Boosted Learning Lesson 20 

 17-7 

Learning a Committee of Classifiers with Boosting 
 
We can iteratively apply the above procedure to learn a committee of classifiers using 
boosting.  For this we will create a vector of "weights" am for each training sample.   
Initially, all the weights are 1.  
 
After each new classifier is added, we recalculate the weights to give more weight to 
improperly classified training samples.  
 
As we add classifiers, whenever a sample is mis-classified by the committee we will 
increase its weight so that it carries more weight in the next classifier added.  
 

Recall the committee vote is  
  

! 

sgn(
! 

W n
T ! X m )

n=1

N

"  > 0 for class 1 (positive detection).  

For m = 1 to M:  if  ( ym ·
  

! 

sgn(
! 

W i
T ! X m + b)

i=1

I

" ) < 0  then   am= am+1 

 
The result is the (n+1)th weight vector An+1 

 

We then learn the n+1th classifier from the re-weighted set by   
 
   

! 

! 
W n+1 = (XTX)"1XT (

! 
A n+1 #

! 
Y )  
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ROC Curve 
 
As we saw in lesson 19,  The ROC describes the True Positives (TP) and False Positives 
(FP) for a classifier as a function of the global bias b.   
 
 For m = 1 to M:  

 if    
  

! 

sgn(
! 

W i
T ! X m + b)

n=1

N

"   > 0 and  ym > 0 then  TP=TP+1 

 if    
  

! 

sgn(
! 

W n
T ! X m + b)

n=1

N

"   > 0 and  ym < 0 then  FP=FP+1  

  
The Boosting theorem states that adding a new boosted classifier to a committee 
always improves the committee's ROC curve.  We can continue adding classifiers 
until we obtain a desired rate of false positives and false negatives.  

  
 
However, in general, the improvement provided for each new classifier becomes 
progressively smaller. We can end with a very very large number of classifiers.  
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Learning a Multi-Stage Cascade of Classifiers 
 
We can optimize the computation time by using a multi-stage cascade.  
With a multi-stage classifiers, only events labeled as positive are passed to the next 
stage.  
 

 
 
Each stage is applied with a bias, so as to minimize False negatives.  
 

   
  

! 

sgn(
! 

W n
T ! X m + B)

n=1

N

"  > 0  

 
Stages are organized so that each committee is successively more costly and more 
discriminant.  
 
Assume a set of M training samples {Xm} with labels {ym} . 
Set a desired error rate for each stage j : (FPj, FNj).  
 
For each stage, j,  Train the j+1 stage with all positive samples from the previous 
stage.  
 
Each stage acts as a filter, rejecting a grand number of easy cases, and passing the 
hard cases to the next stage.  The stages become progressively more expensive, but 
are used progressively less often. Globally the computation cost decreases 
dramatically.  
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Perceptrons 
 
A perceptron is an incremental learning method for linear classifiers invented by 
Frank Rosenblatt in 1956.  The perceptron is an on line learning method in which a 
linear classifier is improved by its own errors.   
 
A perceptron learns a set of hyper-planes to separate training samples.  When the 
training data are perfectly separated the data is said to be "separable".  Otherwise, the 
data is said to be non-separable.  
 
The "margin", γ,  is the smallest separation between the two classes.  
   
When are the training samples are separable, the algorithm uses the errors to update a 
plane until there are no more errors.  When the training data is non-separable, the 
method may not converge, and must be arbitrarily stopped after a certain number of 
iterations.  
     
Note that for all positive examples. 
 
  ym(W 

→Τ X 
→

m  + B) > 0 if the classification is correct.  
 
The algorithm will apply a learning gain,   η,  to accelerate learning.  
  
Algorithm:  
 W 

→

o ← 0; bo ← 0; i = 0;  
 R ← max { || X 

→

m || } 
  REPEAT 
  FOR m = 1 TO  M DO  
   IF  ym(W 

→

i
Τ X 

→

m  + bi) ≤ 0 THEN  
    W 

→

i+1 ←W 
→

i  + η ym X 
→

m; 
    bi+1 ← bi + η ym R2; 
    i ← i + 1;  
   END IF 
  END FOR 
 UNTIL no mistakes in FOR loop.  
 
After each stage the margin for each sample, m, is  
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 γm  = ym(W 
→

i
Τ X 

→

m  + bi)  
 
The coefficients must be normalised to compute the margin.  
 
 

! 

" W i =
Wi

||Wi ||
  

! 

" b i =
bi

||Wi ||
 

 
The decision rule is as before :  
 
   if    

! 

sgn(
! 

W T
! 
X + B)) > 0  then   ω̂1 else  ω̂2 

 
The quality of the perceptron is give by the histogram of the margins.  
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Kernel Methods 
 
Kernel Methods transform a non-linear function into a linear function in a much 
higher dimensional space. Thus they enable linear discriminant methods to be applied 
to a large class of problems where the data are dispersed in a non-linear manner.  
 
Linear methods are very well suited for use with very high dimensional feature space 
provided that the patters can be separated by a plane.  
 
Kernel Methods provide an elegant solution for clustering and classifying patterns in 
complex non-linear data by mapping the data into a higher dimensional space where 
the data can be separated by a linear method.  
 

 
 
Kernels make it possible to  
1) Solve the computational problems of high dimensional spaces 
2) Be extended to infinite dimensional spaces 
3) Be extended to non-numerical and symbolic data! 
 
Linear methods are very well suited for use with very high dimensional feature space. 
We can map a quadratic decision space into a linear space by adding additional 
dimensions.  
  
A  quadratic suface in a D dimensional space can be tranformed into a linear surface 
in a D(D+1)/2 space by  from the D dimensional space to a space P > D. using a 
kernel function, K().  
   
For example a D=2 quadratic space is linear in 5 dimensions:  
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 X 
→

  = (x1, x2, ..., xD) can be projected into a  P  = 
D(D+1)

2      dimension defined by 
K(X) = W = (x1, x2, x1

2, x1x2, x2
2) 
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Kernel Functions 
 
Formally, a Kernel is a function that returns the inner product of a function applied to 
two arguments.   The Kernel matrix is also known as the Gram Matrix.  
 
 

 
  

! 

f (
! 
X ) = am ym "(

! 
X m ),"(

! 
X )

m=1

M

# + b  

 
The key notion of a kernel method is an inner product space.  
 

  
  

! 

! x , ! z = xd
d=1

D

" zd  

 
In general, we will define a kernel function as a quadratic mapping of a feature space, 
φ(x) 
 
   

! 

k(
! 
X 1,
! 
X 2 ) =

! 
" (
! 
X 1)

T ! " (
! 
X 2 ) 

 
Note that the kernel is a symmetric function of its arguments, so that  
 
   

! 

k(
! 
X 1,
! 
X 2 ) = k(

! 
X 1,
! 
X 2 ) 

 
There are a large variety of possible kernel functions that can be used, depending on 
the problem. 
 
example:  Polynomial Kernel: 
 

 
 
Spiral (separated with Gaussian Kernels) 
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In order to be "valid", a kernel must correspond to a scalar product of some feature 
space.  That is, there must exist a space  such that  
 

 
  

! 

k(
! 
X 1,
! 
X 2 ) =

! 
" (
! 
X 1)

T ! " (
! 
X 2 ) = "n(

! 
X 1) #

n=1

N

$ "n(
! 
X 2 ) 

 
For example, consider a quadratic kernel in a space where D=2.  
 
In this case,    

! 

k(! x , ! z ) = (! x T ! z )2 = (x1z1 + x2z2 )
2 = (x1

2z1
2 + 2x1z1x2z2 + x2

2z2
2 ) 

 
This can be expressed as an inner product space where 
 
   

! 

"(! x ) = x1
2 + 2x1x2 + x2

2  
 
giving:  
 
   

! 

k(! x , ! z ) =
! 
" (! x )T

! 
" (! z ) 

 
A necessary, and sufficient condition that a Kernel function be "valid" is that the 
GRAM matrix be positive and semidefinite for all choices of    

! 

{
! 
X m}  

 
A GRAM (or Grammian) Matrix for   

! 

! x  is   

! 

! x T ! x  
 
The linear vector   

! 

! x  is projected onto a quadratic surface  
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Gaussian Kernel 
 
The Gaussian exponential is very often used as a kernel function.  
In this case:  
 
 

  

! 

k(! x , ! " x ) = e#
! x # ! " x 
2$ 2  

 
This is often called the Gaussian Kernel. It is NOT a probability density.  
We can see that it is a valid kernel because:  
 
   

! 

! x " ! # x 2 =
! x T ! x " 2 ! x T ! # x +

! 
# x T ! # x  

 
Among other properties, the feature vector has infinite dimensionality.  
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Kernel function for Symbolic Data 
 
Kernel functions can be defined over graphs, sets, strings and text! 
 
Consider for example, a non-vectoral space composed of a Set of words S.  
Consider two subsets of S  A1 ⊂ S and A2 ⊂ S  
 
The can compute a kernel function of A1and A2 as  
 

   

! 

k(! x , ! " x ) = 2 A1#A2    
 
where |A| denotes the number of elements (the cardinality)  of a set.  
 
Probabilistic generative models tend to be more robust with missing data and data of 
variable length, while Probabilistic Discriminative models tend to give better 
performance and lower cost.  
 
We can combine generative and discriminative models using a kernel. 
 
 Given a generative model p(X) we can define a kernel as:  
 
   

! 

k(! x , ! " x ) = p(! x )p(! " x )  
 
This is clearly a valid kernel because it is a 1-D inner product.   Intuitively, it says 
that two feature vectors, x, are similar if they both have high probability.  
 
We can extend this with conditional probabilities to  
 

 
  

! 

k(! x , ! " x ) =
n=1

N

# p(! x | n)p(! " x | n)p(n) 

 
Two vectors,    

! 

! x , ! " x  will give large values for the kernel, and hence be seen as 
similar, if they have significant probability for the same components.  
 
Kernel functions enable application of linear classifiers to non-linear problems.  
 


