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Notation 
x   a variable 
X   a  random variable (unpredictable value)   
N   The number of possible values for X (Can be infinite).   
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

E   An observation. An event.  
Ck   The class   k 
k   Class index 
K   Total number of classes 
ωk   The statement (assertion) that E  ∈ Ck 
p(ωk) =p(E ∈Ck) Probability that the observation E is a member of the class k. 
   Note that p(ωk) is lower case.  
Mk   Number of examples for the class k. (think M = Mass) 
M   Total number of examples.  

   

! 

M = Mk
k=1

K

"  

{

! 

Xm
k }  A set of Mk examples for the class k.  

   
  

! 

{Xm} = !
k=1,K

{Xm
k } 

P(X)   Probability density function for X 
P(  

! 

! 
X )   Probability density function for    

! 

! 
X 

 
 

P(  

! 

! 
X 

 
| ωk)    Probability density for   

! 

! 
X 

  
the class k. ωk  = E  ∈ Ck.  

h(n)   A histogram of random values for the feature n.   
hk(n)   A histogram of random values for the feature n for the class k.  

   

! 

h(x) = hk
k=1

K

" (x)  

Q   Number of cells in  h(n).  Q = ND 
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Bayesian Classification (Reminder) 
 
Our problem is to build a box that maps a set of features   

! 

! 
X  from an Observation, E 

into a class Ck from a set of K possible Classes.  
 

 

Class(x1,x2, ..., x d)} !̂

x1
x2
...
xd

 
 
Let ωk be the proposition that the event belongs to class k: ωk = E ∈ Ck 

 
 ωk Proposition that event E  ∈ the class k 
 
In order to minimize the number of mistakes, we will maximize the probability that 

! 

"k # E $ Ck  
 

 
  

! 

ˆ " k = arg#max
k

Pr("k |
! 
X ){ }  

We will call on two tools for this:  
 
1) Baye's Rule : 
 

 
  

! 

p(" k |
! 
X ) =

P(
! 
X |" k )p(" k )

P(
! 
X )

 

 
2) Normal Density Functions  
 
 

  

! 

P(
! 
X |"k ) =

1

(2#)
D
2 det($k )

1
2

e–1
2
(
! 
X – ! µ k )

T $k
–1 (
! 
X – ! µ k )   

 
This week we concentrate on Normal Density Functions.  
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The Normal (Gaussian) Density Function 
 

The Univariate Normal Density Function 
 

 p(x) =  N(x; µ, σ) = 
1

2πσ     e 
–
(x–µ)2

2σ2        

 µ µ+!µ"!
x

N(x; µ, !)

 
 

The parameters of N(x; µ, σ) are the first and second moments.  
 

The Multivariate Normal Density Function 
 

 
    

! 

p(
! 
X ) = N (

! 
X | ! µ ,  ") =

1

(2#)
D
2 det(")

1
2

e– 1
2

(
! 
X – ! µ )T "–1 (

! 
X – ! µ )

 

 
In most practical cases, an observation is described by D features.  
In this case a training set   

! 

{
! 
X m}  an be used to calculate an average feature   

! 

! 
µ  

 

  

  

! 

! 
µ = E{

! 
X } =

1
M

! 
X 

m=1

M

" =

µ1
µ2

...
µD

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

=

E{X1}
E{X2}
...

E{XD}

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

 

 
For D dimensions, the second moment is a co-variance matrix composed of D2 terms:  
 

 

! 

"
ij

2 = E{(Xi – µi )(Xj – µ j )} =
1
M

(Xim –
m=1

M

# µi )(Xjm – µ j )  

 
This is often written 
 
   

! 

" = E{(
! 
X – E{

! 
X })(

! 
X – E{

! 
X })T} 

 
and gives 
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! 

" =

#11
2 #12

2 ... #1D
2

# 21
2 # 22

2 ... # 2D
2

... ... ... ...
#D1
2 #D2

2 ... #DD
2

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

 

 
 

The term     (2π)
D
2   det(Σ)

1
2     is a normalization factor.  

 

   

! 

... e– 1
2
(
! 
X – ! µ )T "–1 (

! 
X – ! µ )

dx1dx2...dxD### = (2$)
D
2 det(" )

1
2  

  
The determinant, det(Σ) is an operation that gives the volume of Σ .   
 

for D=2    det ⎝⎜
⎛

⎠⎟
⎞a b

c d      =  a·b–c·d 
 
for D=3 

 det 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞ a b c

 d e f
 g h i

     = a·det ⎝⎜
⎛

⎠⎟
⎞e f

h i      + b·det ⎝⎜
⎛

⎠⎟
⎞f d

i g      + c· det ⎝⎜
⎛

⎠⎟
⎞d e

g h       

   = a(ei-fh)+ b(fg-id)+ c(dh-eg) 
 
for D > 3 this continues recursively.  
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The Mahalanobis Distance 
 
The exponent is positive and quadratic (2nd order). This value is known as the 
"Distance of Mahalanobis".  
 

   

! 

d (
! 
X ; ! µ , ")

2
= –

1
2 (
! 
X – ! µ )

T
"
–1
(
! 
X – ! µ )   

 
This is a distance normalized by the covariance.  In this case, the covariance is said to 
provide the distance metric. This is very useful when the components of X have 
different units.  
 
The result can be visualized by looking at the equi-probably contours.  

Contours  d'équi-probabilité

p(X | µ, C)

x2

x1 
 

 
If xi and xj are statistically independent, then   σij

2 
 =0 

For positive values of σij
2, xi and xj  vary together.  

For negative values of σij
2, 

 xi and xj  vary in opposite directions.  
 
For example, consider features x1 = height (m) and x2 =  weight (kg) 
 
In most people height and weight vary together and so σ12

2 would be positive 
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Linear Transforms of the Normal Multivariate Density 
 
The Normal (Gaussian) function is a defined only by its moments.  
It is thus invariant to transformations of its moments, that is affine transformations.  
The affine transformations include rotation, translation, scale changes and other 
linear transformations.  
 
For example consider a cosine vector   

! 

! 
R , such that ||  

! 

! 
R || =1  

 

 

  

! 

! 
R =

cos("1)
cos("2 )
...

cos("D )

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

 

 
A vector   

! 

! 
X  may be projected into a space   

! 

! 
Y  by  

  
   

! 

! 
Y =
! 
R T
! 
X  

 
The Normal (Gaussian) function is defined only by its moments.  
It is thus invariant to affine transformations of its moments.  
The affine transformations include all linear transformations such as rotation, 
translation, scale changes and sheer.  
 
For a projection onto a 1D vector Y, R is D x 1 :     

! 

! 
Y =
! 
R T
! 
X  

 
 µy  =   

! 

! 
R Τµ 

→

x,      σy2   =   

! 

! 
R ΤΣx   

! 

! 
R   

 
Note that for the Covariance, projection requires pre- and post- multiplication by   

! 

! 
R .  

We can demonstrate this with a linear algebraic expression of the moments.  
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Linear Algebraic Form for Moment Calculation 
 
Calculation of the mean and covariance are often expressed using linear algebra.  
Such expressions are widely used in machine learning.  
 
As before, assume a set of M training examples 

! 

{Xm}  
 

Recall 

  

! 

! 
µ = E{

! 
X } =

1
M

! 
X 

m=1

M

" =

µ1
µ2

...
µD

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

=

E{X1}
E{X2}
...

E{XD}

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

 

 
We can compose a matrix with M columns and D rows from {Xm}.  
 

 

! 

X =

x11 x12 ... x1M

x21 x22 ... x2M

... ... ...
xD1 xD2 ... xDM

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 Let us define the unity vector : 

  

! 

! u =

1
1
"
1

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

 

Then 

  

! 

! 
µ =

µ1
µ2

...
µD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=

x11 x12 ... x1M

x21 x22 ... x2M

... ... ...
xD1 xD2 ... xDM

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

1
1
"
1

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

= X ( ! u  

 
Let us define   

! 

! 
V m =

! 
X m "E{

! 
X m} =

! 
X m "

! 
µ m .  

 
We can compose a matrix with M columns and D rows from {Vm}.  
 

 

! 

V =

v11 v12 ... v1M
v21 v22 ... v2M
... ... ...
vD1 vD2 ... vDM

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

 
From this:    

! 

"x = E{
! 

V 
! 
V T}  can be computed as a vector product.  

 
Σx ≡ V VT  

 is a  D x D matrix that captures the "co-variance" of the elements of i,j of  
the vector X in {Xm}  
 
This can be seen as  
  



Bayesien Discriminant Functions Lesson 16 

 16-9 

 

! 

"X =VVT =

# # # #

# # # #

# # # #

# # # #

# # # #

# # # #

# # # #

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& & 

' 

( 

) 
) 
) 
) 
) 
) 
) 
) ) 

# # # # # # #

# # # # # # #

# # # # # # #

# # # # # # #

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

=

# # # # # # #

# # # # # # #

# # # # # # #

# # # # # # #

# # # # # # #

# # # # # # #

# # # # # # #

$ 

% 

& 
& 
& 
& 
& 
& 
& 
& & 

' 

( 

) 
) 
) 
) 
) 
) 
) 
) ) 

 

 
Note that we can also write  ΣM =  VT V  of size  M x M.   
 
We can use this to show that projection of a covariance requires pre and post 
multiplication:  
  
Note que    

! 

(
! 
R TV )T   =    

! 

(V T ! R )   
 
Thus      

! 

"y = (
! 
R TV )(

! 
R TV )T  

    

! 

"y = (
! 
R TV )(V T ! R ) 

    

! 

"y =
! 
R T (VV T )

! 
R  

    

! 

"y =
! 
R T"X

! 
R  

 
Thus projection of a covariance requires pre and post multiplication by  

! 

! 
R .  

In the case of projection to a 1D vector Y:  
 
   

! 

" y
2 =
! 
R T#X

! 
R  

  

  
 


