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Notation 
 
x   a variable 
X   a  random variable (unpredictable value)   
N   The number of possible values for x (Can be infinite).   
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

E   An observation. An event.  
Ck   The class  k 
k   Class index 
K   Total number of classes 
ωk   The statement (assertion) that E  ∈ Ck 
Mk   Number of examples for the class k. (think M = Mass) 
M   Total number of examples.  

   

! 

M = Mk
k=1

K

"  

{

! 

Xm
k }  A set of Mk examples for the class k.  

   
  

! 

{Xm} = !
k=1,K

{Xm
k } 
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Bayesian Classification (Reminder) 
 
Our problem is to build a box that maps a set of features   

! 

! 
X  from an Observation, E 

into a class Ck from a set of K possible Classes.  
 

  

Class(x1,x2, ..., x d)} !̂

x1
x2
...
xd

 
 
Let ωk be the proposition that the event belongs to class k: ωk = E ∈ Tk 

 
  ωk Proposition that the event E  ∈ the class k 
 
In order to minimize the number of mistakes, we will maximize the probability that 
that the event E  ∈ the class k 
 

 
  

! 

ˆ " k = arg#max
k

Pr("k |
! 
X ){ }  

 
A fundamental tool for this is Baye's rule.  
 
Baye's Rule : 
 

 
  

! 

p(" k |
! 
X ) =

P(
! 
X |" k )p(" k )

P(
! 
X )

 

 
We can use histograms to estimate the probability p(X=x).   
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Bayesian Probability 
 
Baye's rule provides a method to accumulate evidence to reduce uncertainty.  
 
Bayesian probability can be seen as an extension of logic that enables reasoning with 
uncertain statements. Bayesian probability interprets probability as "a measure of a 
state of knowledge", rather than as "frequency of occurrence".  
 
In Bayesian probability, the confidence of a proposition is represented by a 
probability number between 0 and 1.  
 
To evaluate the confidence of a hypothesis, we determine a prior probability 
This prior is then updated by observing new evidence.  
 
The Bayesian interpretation provides a standard set of procedures and formulae to 
perform this calculation.  
 
Although Bayesian logic is based on axiomatic probability, we can use histograms to 
illustrate Bayes rule.  
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Using Histograms to Estimate Probability  
 
When x is a natural number,  x ∈ [1, N], the application is obvious.  However, the 
same technique works for real as well as symbolic values of x. 
 
Given a training set {Xm} of features from M events, such that  x ∈ [1, N], we can 
build a table of frequency for the values of X. We allocate a table of N cells, and use 
the table to count the number of times each value occurs:  
 
 ∀m=1, M  :  h(Xm) := h(Xm) + 1; 
 
Then the probability that a feature X ∈ {Xm} from this set has the value x is then   
 

  P(X=x)  = 
1
M  h(x) 

 
If the 
1) the sample is large enough (M > 8 Q, where Q=ND),  and  
2) the  observing conditions are "ergodic" (do not change with time),  
then the histogram will also predict frequency of occurrence for future events.  
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Histogram Representation for a Bounded Integer  
 
To use a histogram to build a non-parametric representation for numerical features 
the set of possible values for the feature must be finite. That is, each feature value 
must be represented by an integer x from a finite range: 
 
  x ∈ [xmin, xmax].  
 
In many problems this occurs naturally. For example: the age, height, weight of a 
person, grades in a class, amount of change in a purse.  In other cases, we can map 
the feature into a finite range.  
 
For convenience, we will map features to integer values in the range x ∈ [1, N], 
 
If X is integer, with x ∈ [xmin, xmax] we need only subtract xmin.  
 
 x:=x- xmin.  
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Histograms for unbounded integer x. 
 
If x is unbounded we must first bound it. We define bounds: xmin and xmax. 
Then 
 If (x < xmin) then x := xmin; 
 If (x > xmax) then x := xmax; 
 x :=x- xmin. 
 

Histograms for real x. 
 
If X is real, we must quantize it with a function such as “trunc()” or “round()”.  The 
function trunc() removes the fractional part of a number.  Round() adds ½ then 
removes the factional part:  
 
To quantize X to N discrete values : 
 
For X real:    
 If (x < xmin) then x := xmin; 
 If (x > xmax) then x := xmax; 
 x := x-xmin. 
 

 

! 

n = trunc N "
x

xmax # xmin

$ 

% 
& 

' 

( 
) +1 

 
 if n > N then n=N.  
 
This last line handles the rare case where X=Xmax and thus n=N+1.  
 

Symbolic Features 
 
If the features are symbolic,  h(x1, x2) is a hash, and the feature and class labels act as 
a hash key. If there are no order relations between the symbols, then h(x1, x2)  is 
called a bag.  
 
"Bag of Features" methods are increasingly used for learning and recognition. 
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When X is a vector of D features.  
 
When X is a vector of D features each of the components must be normalized to a 
bounded integer between 1 and N. This can be done by individually bounding each 
component, xd.  
 
Assume a feature vector of D values   

! 

! x  
 

  

  

! 

! 
X =

x1
x2
...
xD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
 

 
Given that each feature xd ∈ [1, N], allocate a D dimensional table  
 h(x1, x2, …, xD) = h(  

! 

! x ).  
 
The number of cells in h(  

! 

! 
X ) is  Q=ND. 

As before,  
 
 ∀m=1, M  :    

! 

h(
! 
X m ) = h(

! 
X m )+1 

 
Then:  
 

    

! 

p(
! 
X = ! x ) =

1
M

h(! x )  
 
as we saw in the previous lecture, the average error depends on the ratio   

Q=ND 
 and M. :   Ems ~  O( 

Q
M ) 
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Illustrating Baye's Rule with Histograms 
 
Suppose we have a set of events described by a pair of properties.  
For example, consider the your grade in 2 classes x1 and x2.  
 
Assume your grade is a letter grade from the set {A, B, C, D, F}.  
 
We can build a 2 dimensional hash table, where each letter grade acts as a key into 
the table  h(x1, x2).  
 
This hash table has  Q= 5 x 5 = 25 cells.  
 
Each student is an observation with a pair of grades (x1, x2).     
 
  ∀m=1, M  : if  h(x1, x2) := h(x1, x2)  + 1;  
 
Question: How many students are needed to fill this table? 
Answer  M ≥ 8Q = 200.  
 
An example, consider the table as follows:  
 
 x1  
             

 
   h(x1,x2) A B C D F r(x2) 

 A 2 5 3 1   11 
 B 5 16 8 1   30 
 C 2 12 20 3 1 38 
 D   2 6 2 2 12 
 

 
 
x2 

F     4 4 1 9 
  c(x1) 9 35 41 11 4 100 
 
Any cell, (x1, x2) represents the probability that a student got grade X1 for course C1 
and grade X2 for  course C2. 
 
 p(X1 = x1 ∧ X2 = x2) = 

! 

1
M
h(x1, x2 ) 

 
Let us note the sum of column  x1 as c(x1) and sum of row x2 as r(x2) and the value of 
cell x1,x2 as h(x1,x2) 
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! 

c(x1) = h(
x2={A,B,....F}
" x1, x2 )  

! 

r(x2 ) = h(
x1={A,B,....F}
" x1, x2 )   

 
for example  r(x1=B) = 30,  C(x2=B) = 35,  h(x1,x2) = 16 
 
From this table we can easily see three fundamental laws of probability:  
 

Sum Rule: 

  

! 

p(X1 = x1) = p(X1 = x1,X2 = x2 ) =
x2={A,B,...,F}
" 1

M
h(x1, x2 ) =

1
Mx2={A,B,...,F}

" c(x1) 

 

example:   

! 

p(x1 = B) = p(x1 = B, x2 ) =
x2=A,B,...,F
" 1

M
h(B, x2 ) =

c(B)
Mx2=A,B,...,F

" =
35
100

 

 

from which we derive the sum rule:  

! 

p(X1 = x1) = p(X1 = x1,X2 = x2 )
X2

"  

or more simply 

! 

p(X1) = p(X1,X2 )
X2

"  

This is sometimes called the "marginal" probability, obtained by "summing out" the 
other probabilities.  
 
Conditional probability:   
 
We can define a "conditional" probability as the fraction of one probability given 
another.  
 
 

! 

p(X1 = x1 | X2 = x2 ) =
h(x1, x2 )
r(x2 )

=
h(x1, x2 )
h(x1, x2 )

x1

"
   

 
For example.  
 
  

! 

p(X1 = B | X2 =C) =
h(B,C)
h(x1,C)

x1

"
=
12
38

 and 

! 

p(X2 =C | X1 = B) =
h(B,C)
h(B, x2 )

x2

"
=
12
35

 

 
 From this, we can derive Bayes rule :  
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! 

p(X1 | X2 ) " p(X2 ) =
h(X1,X2 )
h(X1,X2 )

X1

#
" h(X1,X2 )
X1

# = h(X1,X2 ) =
h(X1,X2 )
h(X1,X2 )

X2

#
" h(X1,X2 )
X2

# = p(X2 | X1) " p(X1)

 
or more simply 
 
 

! 

p(X1 | X2 ) " p(X2 ) = p(X2 | X1) " p(X1) 
 
or more commonly written: 
 
 

! 

p(X1 | X2 ) =
p(X2 | X1) " p(X1)

p(X2 )
 

 

Product Rule  
 
We can also use the histogram to derive the product rule.  
 
Note that 

! 

p(X1 = i,X2 = j) = h(i, j)  
 
  

! 

p(X1 = i | X2 = j) =
h(i, j)

h(i, j)
i
"

 

 
and  

! 

p(X1,X2 ) = p(X1 | X2 ) " p(X2 ) 
 
These rules show up frequently in machine learning and Bayesian estimation.  
 
Note that we did not need to use numerical values for x1 or x2.   
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Baye's Rule as a Ratio of Histograms 
 
Suppose that we have 2 classes, k=1 and k=2, and that we observe a training set of 
M1 events from class k=1:    

! 

{
! 
X m
1 }  and M2  events from class k=2   

! 

{
! 
X m
2 }  

 
We assume that the feature vectors have D dimensions, each quantized to integer 
values in the range [1, N].   We assume stationary observing conditions with  
M1 ≥ 8ND and M2 ≥ 8 ND.  
 
We build the histograms   

! 

h1(
! x ) and   

! 

h2 (
! x ):  

 for m=1 to M1 :   

! 

h1(
! 
X m
1 ) := h1(

! 
X m
1 )+1 

 for m=1 to M2 :   

! 

h2 (
! 
X m
2 ) := h2 (

! 
X m
2 )+1 

 
We also define    

! 

h(! x ) = h1(
! x )+ h2 (

! x )  and M = M1+ M2  
 
Thus, for a new observation, E, with features mapped to integers,  then 
 
 

  

! 

p(
! 
X ) =

1
M

h(! x )   where   

! 

p(
! 
X ) is shorthand for   

! 

p(
! 
X = ! x ) 

 
  

! 

p(
! 
X |"k ) =

1
M k

hk (
! x )   

 

! 

p(E " Ck ) = p(#k ) =
Mk

M
  

 

Thus   

  

! 

p("1 | n) =
p(
! 
X |"k )p("k )

p(
! 
X )

=

1
M k

hk (
! x )M k

M
1
M

h(! x )
=

hk (
! x )

h(! x )
 

If D =1 

  
For example, p(ω1| x=2 ) = ¼ 
The probability of observing class k give feature x is p(ωk|x)= hk(x)/h(x) 
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Variable size histogram cells 
 
If the quantity of training data is too small, ie  M < Q we can combine adjacent cells 
so as to amass enough data for a reasonable estimate.  
 
Let us define the volume of each cell as 1.  
Then the volume of the entire space is   Q=ND.   
 
Suppose we merge V adjacent cells such that we obtain a combined sum of P. The 
volume of the combined cells would be V  
 
 

  

! 

P = h
! 
X "V
# (

! 
X ) 

The probability   

! 

p(
! 
X ) for   

! 

! 
X "V   is  

  

! 

p(
! 
X ) =

P
MV  

 
Suppose our samples   

! 

{
! 
X m}  are drawn from a density   

! 

p(
! 
X ).  

If take a volume, V, from this density then  
 
 

  

! 

p(
! 
X m "V ) =

P
MV

 

 
We can use this equation to develop two alternative non-parametric methods.  
 
Fix V and determine P =>  Kernel density estimator.  
Fix P and determine V => K nearest neightbors.  
 
(note in most developments the symbol “K” is used for the sum the cells.  This 
conflicts with the use of K for the number of classes. Thus we substitute the symbol P 
for the sum of adjacent cells).  
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Conclusions about Histograms 
 
as a representation of probability, histograms have advantages and disadvantages.  
 
Advantages 
1) They have a fixed size, Q,  independent of the quantity of data.  It is not necessary 
to store the data.  
2) They can be composed and used incrementally.   
 
The disadvantage is that  
 
1) Each feature must be quantized over a limited range of N values.  
2) We need M >> Q data samples.  
3) There are discontinuities at the boundaries of each cell.  
 
Because the 

  

! 

M = h(
! 
X )

! 
X 
"  we are sure that 

  

! 

p(
! 
X )

! 
X 
" =1 

 


