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 A Committee of Boosted Classifiers 
 
One of the more original ideas in machine learning the last decade is the discovery of 
a method by to learn a committee of classifiers by boosting.  A boosted committee of 
classifiers can be made arbitrarily good: Adding a new classifier always improves 
performance.  
 
A committee of classifiers decides by voting.  
 

 
 
A feature vector is determined to be in the target class if the majority of classifiers 
vote > 0.  
 

 if  
  

! 

! 
W i

T "
! 
X m

i=1

I

#  > 0  then   ω̂1 else  ω̂2 

  
To learn a boosted committee we iteratively add new classifiers to the committee.  
In each cycle we change the data set and learn a new classifier, Wi  
 
The data set will be changed by giving additional weight to improperly classified 
samples. We learn the next class by multiplying the Y labels a weight vector, Ai.  
 
   

! 

! 
W i = (XTX)"1XT (

! 
A i #
! 
Y )  

 

Learning a Committee of Classifiers with Boosting 
 
We can iteratively apply the above procedure to learn a committee of classifiers using 
boosting.  For this we will create a vector of "weights" am for each training sample.   
Initially, all the weights are 1.  
 
After each new classifier is added, we recalculate the weights to give more weight to 
improperly classified training samples.  
 



  

 3 

As we add classifiers, whenever a sample is misclassified by the committee we will 
increase its weight so that it carries more weight in the next classifier added.  
 

Recall the committee vote  if  
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(
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W i
T ! X m )

i=1
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"  > 0 then Class 1 (positive detection).  

 

For m = 1 to M:  if  ( ym ·
  

! 

(
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W i
T ! X m )

i=1

I

" ) < 0  then   am= am+1 

 
The result is the (i+1)th weight vector Ai+1 

 

We then learn the i+1th classifier from the re-weighted set by   
 
   

! 

! 
W i+1 = (XTX)"1XT (

! 
A i+1 #

! 
Y )  

 
  

ROC Curve 
 
As we saw in lesson 19,  The ROC describes the True Positives (TP) and False Positives 
(FP) for a classifier as a function of the global bias B.   
 
 For m = 1 to M:  

 if    
  

! 

(
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W i
T ! X m )

i=1

I

"  +B > 0 and  ym > 0 then  TP=TP+1 

 if    
  

! 

(
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W i
T ! X m )

i=1

I

"  +B > 0 and  ym < 0 then  FP=FP+1  

  
The Boosting theorem states that adding a new boosted classifier to a committee 
always improves the committee's ROC curve.  We can continue adding classifiers 
until we obtain a desired rate of false positives and false negatives.  
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However, in general, the improvement provided for each new classifier becomes 
progressively smaller. We can end with a very very large number of classifiers.  
 

Learning a Multi-Stage Cascade of Classifiers 
 
We can optimize the computation time by using a multi-stage cascade.  
With a multi-stage classifiers, only events labeled as positive are passed to the next 
stage.  
 

 
 
Each stage is applied with a bias, so as to minimize False negatives.  
 
Stages are organized so that each committee is successively more costly and more 
discriminant.  
 
Assume a set of M training samples {Xm} with labels {ym} . 
Set a desired error rate for each stage j : (FPj, FNj).  
 
For each stage, j, train the j+1 stage with all positive samples from the previous stage.  
 
Each stage acts as a filter, rejecting a grand number of easy cases, and passing the 
hard cases to the next stage.  The stages become progressively more expensive, but 
are used progressively less often. Globally the computation cost decreases 
dramatically.  
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 Boosted Linear Classifiers for Face Detection in Images 
 

The Detection Process 
 
A Cascade of Classifiers detects faces with a window scanning approach.  
 
An image window, P(i, j; u, v, s) is an  (sW  x sH) pixel window with its upper left 
corner at pixel (u, v).  During the detection proces will note this as P(u,v,s), leaving 
(i,j) as implicit.  Training will us a collection of M labeled windows Xm=P(u,v,s).  
Of course, each Xm is a 2D signal Xm(i,j).  
 
The window is texture mapped (transformed) so that it fits into a standard size 
window of a given size (W, H).  For faces, the window size is typically 
approximately (24, 24) pixels.  
 
 

 
 
The decision of whether the window P(u,v,s) contains a face is provided by a cascade 
of boosted linear classifiers.   
 

 
 
The algorithm requires a large number of local "features" to classify the window.   
 
They can also be provided by Haar wavelets computed using a Difference of Boxes 
as shown below. 
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Image Description with Difference of Boxes 
 
An image rectangle is defined by the top-left and bottom-right corner. 
This may be represented by a vector (t, l, b, r). The sum of pixels in a rectangle 
defines a box feature.  
 

Box Features 
 
A box feature is the sum of pixels over a rectangle from top (t) to left (l) and bottom 
(b) to right (r), with the constraints : top <  bottom and right  > left.  
 

 

! 

b(t, l,b,r) = p(i, j)
j= t

b

"
i= l

r

"   

 

 

 
 (Window of image at P(u,v,s).  
 
For a window of size WxH there are N=W2H2/4 possible boxes.  
 

 

! 

N =
W 2

2
"
H 2

2
 

 

Difference of Boxes 
 
A first order Difference of Boxes (DoB) feature is a difference of two boxes 

! 

box(t1,l1,b1,r1) .  
 
 

! 

DoB(t1,l1,b1,r1,t2,l2,b2,r2) = box(t1,l1,b1,r1) – box(t2,l2,b2,r2)  
 
There are N2 possible 1st order (2 box) DoB features in an image  
There are N3 possible 2nd order (3 box) DoB features in an image.  
Not all DoBs are useful.  
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An interesting subclass are Difference of Adjacent Boxes where the sum of pixels is 
0.   These are Haar wavelets.  
 

Haar Wavelets:  
 
The Haar wavelet is a difference of rectangular Windows.  
 

   
 

 

! 

h(t) =

1    for 0 " t < 0.5
#1    for 0.5 " t <1

0    for t < 0 and t $1

% 

& 
' 

( 
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The Haar wavelet may be shifted by d and scaled by s  
 
 

! 

h(t;s,d) = h(t /s " d) 
 
Note that the Haar Wavelet is zero gain (zero sum).  
 

 

! 

G = h(t)dt = 0
"#

#

$  

 
The Digital (discrete sampled) form of Haar wavelet is  
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! 

h(n;d,k) =

1    for d " n < d + k /2
#1    for d +k/2 " n < d + k
0    for n < d and n $ d +k

% 

& 
' 

( 
' 

 

 
Haar wavelets can be used to define an orthogonal transform analogous to the Fourier 
basis.  
 
Haar Functions, and the Walsh-Hadamard transform have been used in Functional 
Analysis and signal processing for nearly a century.  
 
In the 1980s the Wavelet community re-baptized the Haar functions as "wavelets" 
and demonstrated that the Walsh-Hadamard transform is the simplest form of wavelet 
transform.  
 
A 2-D form of Walsh-Hadamard transform may be defined using DoB features.  
These can be calculated VERY fast using an algorithm known as Integral Images.  
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Fast 2D Haar Wavelets using Integral Image  
 

Integral Images.  
 
An integral image is an image where each pixel contains the sum from the upper left 
corner.  
 

 

! 

ii(u,v) = p(i, j)
j=1

v

"
i=1

u

"  

 
In many uses, p(i,j) is a window extracted from a larger image at (u,v,s).  
An integral image provides a structure for very fast computation of 2D Haar 
wavelets.   
 
Any box feature can be computed with 4 operations (additions/subtractions).  
 
 box(t,l,b,r)=ii(b,r)–ii(t,r)–ii(b,l)+ii(t,l) 
 

  
 
An arbitrary 1st order difference of boxes costs 8 ops.  
 
      DoB(t1,l1,b1,r1,t2,l2,b2,r2)  = ii(b1,r1)–ii(t1,r1)–ii(b1,l1)+ii(t1,l1)  
       – ii(b2,r2)–ii(t2,r2)–ii(b2,l2)+ii(t2,l2)  
 
However, a 1st order  Haar wavelet costs  only 6 ops because  r1=l2 and thus 
 
ii(t1,r1) = ii(t2,l2)  and ii(b1,r1)= ii(b2,l2) 
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 Haar(t1,l1,b1,r1,b2,r2)  = ii(b2,r2)–2ii(b1,r1)+ii(b1,l1)–ii(t2,r2)+2ii(t1,r1)–ii(t1,l1) 
     

Fast Integral Image algorithm.  
 
Integral images have been used for decades to compute local energy for 
normalization of images. The fast algorithm involves a row buffer that contains the 
sum of each row 
 
 For j = 1 to I 
 For i=1 to J 
  r(i) := r(i) + p(i,j) 
  ii(i,j) = ii(i-1,j)+r(i) 
 
Cost = 2IJ ops.  
 

  
  
 In 2001, Paul Viola and Mike Jones at MERL (Misubishi Research Labs) showed 
that Haar wavelets could be used for real time face detection using a cascade of linear 
classifiers.  
 
They computed the Haar Wavelets for a window from integral images.  
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Linear Classifiers for Face Detection 
 
The innovation in the Viola-Jones face detector resulted from  
 
1) A very large number of very simple features (Haar wavelets).  
2) The use of the Ada boost algorithm to learn an arbitrarily good detector.  
 
HAAR wavelets are computed using difference of Boxes, with Integral Images.  
 
A WxH image contains N = W2H2/4 possible 1st order Haar wavelets.  
(difference of adjacent boxes of same size ).  
 

   
 
Similarly, any 2nd Haar wavelet can be computed with 8 ops.  
 

  
 
A WxH window contains W2H2/8 possible 1st and 2nd order Haar wavelets. 
These provide a space of N = W2W2/8 features for detecting Faces.  
Each feature, Fn

 is defined as a difference of boxes.  
 

   
 
For a give position (u,v) and scale (s)  any window W(u, v, s) that contains a face is a 
point "+" in this very N-dimensional space.  
 
 



  

 12 

 
 
 
Each feature can be used to define a hyper-plane    

! 

! 
F n

T "
! 
X + bn = 0  

 
For 2D features, the inner product is  
 

  

! 

Fn
T "
! 
X = Fn,P(i, j) = Fn (i, j) "

j=1

H

#
i=1

W

# P(i, j)  

 
Thus our hyperplane is simply the difference of adjacent boxes (Haar Wavelet) n plus 
a bias:  
 
 

! 

Fn,P(i, j) +bn = 0   
 
The problem is to choose bn so that most non-face windows are on one side of the 
hyperplane and most face windows are on the other.  
 

Training a single classifier:  
 
Assume a very large training set of M labeled face windows   

! 

{
! 
X m}  that have been 

labeled by a set of labels {ym} such that   y=+1 if face and y=–1 if not face.  
Each   

! 

! 
X m = Pm (u,v) 

 
For a given Haar wavelet, n:   Compute     

! 

bn = "E{(
! 
F n

T #
! 
X m ) # ym} = 0   

 
Note that for a True Positive or True Negative   

! 

(
! 
F n

T "
! 
X ) " ym + bn #  0  
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Then for any window, X(i,j)=P(i,j; u,v,s), we can classify it as Face or Not face using:    
 
  

! 

(
! 
F n

T "
! 
X ) " ym + bn #  0  then Face else not Face.  

 
Thus each DoB feature, n, is a linear classifier. 
 
For the training set {Xm}, the error rate for the feature Fn is    
  
 

  

! 

En = Card
m

{(Fn
T "
! 
X m ) " ym + bn <  0} 

 
(add 1 for each  FP and FN. ) 
 
For a set  {(Xm, ym)}, {(Fn, bn)} the best classifier is minimum error rate. 
 
 Arg-Minn{En} 
 
We want to learn the set of i best classifiers.  
We can improve learning with Boosting.  
 
Note that there are two parts to the errors:  
False Positives (FP) and False Negatives (FN) 
 
We can trade FPs for FNs by adding a Bias B,  
 
   

! 

(
! 
F n

T "
! 
X ) " ym + bn + B #  0  then Face else not Face 
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Boosted Learning 
 
To boost the learning, after selection of each "best" classifier, (Fn, Bn) 
we re-weight the labels yn to increase the weight of incorrectly classed windows:  
 
 For all m = 1 to M  if (<Xm, Fn> + bn) · ym

(i–1) < 0  then ym
(i) = 2 ym

(i–1) 
 
We then learn the ith classifier from the re-weighted set  
 
 Emin = M 
 For n=1 to N do 
  Bm = E{ <Xm, Fn> · ym

(i)} 
  En = Card{(<Xm, Fn> + bn) · ym < 0} 
  if En  < Emin then Emin := En 



  

 15 

Learning a Committee of Classifiers with Boosting 
 
  We can improve classification by learning a committee of the best I classifiers.  

  
 
The decision is made by voting.  A window X(i,j)=P(i, j; u,v,s) is determined to be a 
Face if the majority of classifiers vote ≥ 0.  
 

 If  
  

! 

! 
F i

T "
! 
X + bi

i=1

I

# $ 0  then Face else Not-Face.  

 

ROC Curve 
We can describe a committee of classifiers with an ROC curve, but defining a global bias, 
B.   The ROC describes the number of False Positives (FP) and False Negatives (FN) for a 
set of classifier as a function of the global bias B.   
 
 FP = Card{(<Xm, Fn> + bn+B)  > 0 and  ym = –1} 
 FN = Card{(<Xm, Fn> + bn+B)  < 0 and  ym = +1} 
 
The Boosting theorem states that adding a new boosted classifier to a committee 
always improves the committee ROC curve.  We can continue adding classifiers until 
we obtain a desired rate of false positives and false negatives.  
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Learning a Multi-Stage Cascade of Classifiers 
 
We can optimize the computation time by using a multistage cascade.  
 
Algorithm:  
 
1) Set a desired error rate for each stage j : (FPj, FNj).  
2) For j = 1 to J 
 For all windows labeled as Face by  j-1 stage, learn a boosted committee of 
classifiers that meets  (FPj, FNj).  
 

 
 
Each stage acts as a filter, rejecting a grand number of easy cases, and passing the 
hard cases to the next stage.  
  
 
 


