Pattern Recognition and Machine Learning

James L. Crowley

ENSIMAG 3 MMIS
First Semester 2010/2011
Lessons 1-5
January 2011

Exercise:
You are given the weight (kg), height (cm), age (years) and gender for 20000 people. Weight (kg), Height (cm), Age (years) are given as integers in the following ranges: Weight W [11, 210], Height is from H [121, 220], Age is from A[1, 100]. Gender, (G) is given as the symbol M or F. The data combines information from people from Paris, Chicago, Shanghai and Peru. You are not given the origin of the data.

1. You are asked to construct a 4 Dimensional Table frequencies $\mathrm{h}(\mathrm{W}, \mathrm{H}, \mathrm{A}, \mathrm{G})$ for this data. Assuming $M=16,000$ samples, how many cells are reasonable for $h()$. Define a "reasonable" quantization for each variable so that your table has this number of cells. Define the transformations for W, H, and A for this quantization.
2. Consider that each cell gives the frequency of occurrence for a specific value $(\mathrm{W}=\mathrm{w})^{\wedge}(\mathrm{H}=\mathrm{h})^{\wedge}(\mathrm{A}=\mathrm{a})^{\wedge}(\mathrm{G}=\mathrm{g})$. For notational convenience, let us write this as $\mathrm{W}^{\wedge} \mathrm{H}^{\wedge} \mathrm{A}^{\wedge} \mathrm{G}$

Give formulas for $\mathrm{P}\left(\mathrm{W}^{\wedge} \mathrm{H}^{\wedge} \mathrm{A}\right), \mathrm{P}^{\left(\mathrm{W}^{\wedge} \mathrm{H}\right), \mathrm{P}(\mathrm{W}) \text {. }}$
3. Show that $P\left(W^{\wedge} H \mid A\right)=P\left(A \mid W^{\wedge} H\right) P\left(W^{\wedge} H\right) / P(A)$
4. Show that $P(W)=P(H) P(W \mid H) / P(H \mid W)$
5. Explain how to use EM to discover 4 distinct Gaussian functions to represent the data.

