
Intelligent Systems: Reasoning and Recognition 
 

James L. Crowley 
 
ENSIMAG 2 / MoSIG M1 Second Semester 2009/2010 
 
Lesson 20 7 May 2010 
 
 

 Linear Classification Methods  
 

Contents 

Notation.............................................................................2 

Learning Linear Classifiers................................................3 
Pattern detectors as linear classifiers............................................. 4 

Least squares estimation of a hyperplane ..........................5 

A Committee of Boosted Classifiers..................................6 
Learning a Committee of Classifiers with Boosting...................... 7 
ROC Curve................................................................................... 8 
Learning a Multi-Stage Cascade of Classifiers ............................. 9 

Perceptrons ......................................................................10 

Kernel Methods ...............................................................12 
 
 
  
Sources Bibliographiques :  
"Neural Networks for Pattern Recognition", C. M. Bishop, Oxford Univ. Press, 1995. 
"Pattern Recognition and Scene Analysis", R. E.  Duda and P. E. Hart, Wiley, 1973.  



Linear Classifiers and Boosted Learning Lesson 20 

 17-2 

Notation 
x   a variable 
X   a  random variable (unpredictable value)   
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

E   An observation. An event.  
k   Class index 
K   Total number of classes 
ωk   The statement (assertion) that E  ∈ Tk 
Mk   Number of examples for the class k. (think M = Mass) 
M   Total number of examples.  

   

! 

M = Mk
k=1

K

"  

{

! 

Xm
k }  A set of Mk examples for the class k.  

   
  

! 

{Xm} = !
k=1,K

{Xm
k } 

{

! 

ym}   A set of class labels (indicators) for the samples 
   For detection (K=2), y ∈ {+1, –1} 
 



Linear Classifiers and Boosted Learning Lesson 20 

 17-3 

Learning Linear Classifiers.  
 
     

! 

ˆ " k = d(! g (
! 
X ))  

 
In lesson 16 we saw that the classification function can be decomposed into two 
parts:  d(gk(X)) and gk(X): 
 

 

  

! 

! g (
" 
X ) =

g1(
" 
X )

g2(
" 
X )
...

gK (
" 
X )

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

    A set of discriminant functions : RD → RK 

 d() :    a decision function    RK → {ωK} 
  
We derived the canonical form for the discriminant function.  
  

 

  

! 

gk (
! 
X ) =

! 
X T Dk

! 
X +
! 

W k
T ! X + bk  

 
 
where:     

! 

Dk =

! 

"
1
2
Ck

"1  

       

! 

! 
W k = "2Ck

"1 ! µ k  
and    bk = 

  

! 

"
1
2
! 
µ k

TCk
"1 ! µ k " Log{det(Ck )}+ Log{p(#k )} 

 
A set of K discrimination functions gk(  

! 

! 
X ) partitions the space   

! 

! 
X  into a disjoint set of 

regions with quadratic boundaries.  At the boundaries between classes: 
     

! 

gi(
! 
X )" gj (

! 
X ) = 0  

 
In our last lesson we saw that in many cases  the quadratic term can be ignored and 
the partitions take on the form of hyper-surfaces. In this case, the discrimination 
function can be reduced to a linear equation.  
 
   

! 

gk (
! 
X ) =

! 
W k

T ! X + bk  
 
This is very useful because there are simple powerful techniques to calculate the 
terms of such an equation.  
 
 



Linear Classifiers and Boosted Learning Lesson 20 

 17-4 

Pattern detectors as linear classifiers.  
 
 Linear classifiers are also widely used to define pattern “detectors”.  This is widely 
used in computer vision, for example to detect faces or publicity logos, or other 
patterns of interest.  
 
In the case of pattern detectors,  K=2.  
 
 Class k=1:  The target pattern.  
 Class k=2:   Everything else.  
 
  
In the following examples, we will assume that our training data is composed of M 
sample observations {X 

→

m}  where each sample is labeled with an indicator  ym 
  
 ym = +1 for examples of the target pattern (class 1) 
 ym = –1 for all other examples.  
 
A variety of techniques exist to calculate the plane. The best choice can depend on 
the nature of the pattern class as well as the nature of the non-class data.  
 
For example:  

1) Vector between center of gravities.  
2) Fisher linear discriminant analysis,  
3) Least Squares estimation 
4) Perceptrons 

  
Wednesday we saw the first 2.  Here we  look at least-squares 
 



Linear Classifiers and Boosted Learning Lesson 20 

 17-5 

Least squares estimation of a hyperplane 
 
Assume a training set of M labeled training samples {ym, X 

→

m}  
such that  ym=+1  for class 1 and ym  = –1 for class 2.  
 
Our goal is to determine  a function    

! 

g(
! 
X ) =

! 
W T
! 
X + b  

 

Such that we minimize a "Loss" function:  
  

! 

L( ˆ W ) = (ym –
! 

W T
! 
X m )2

m=1

M

"   

We will use the M training samples to compose a matrix X and a vector Y.  
  
 X =  (X 

→

1, X 
→

2, ..., X 
→

M)  (D row by M columns) 
 
 Y = (y1, y2, ...,  yM)Τ  (M coefficients).  
 
We write   L(W) = (Y – XΤW)Τ (Y – XΤW) 

 
To minimize the loss function, we calculate the derivative and solve for W when the 
derivative is 0.  
  
 

! 

"L(W )
"W

= –2 XΤY + 2 XΤ X W = 0 

 
Thus :   XΤY =  XΤ X W  
   
   W = ( XΤ X)–1  XΤ Y 
 
From this classifier an unknown event X 

→
 as  

 
 if    

! 

! 
W T
! 
X > 0  then   ω̂1 else  ω̂2 

 
 
We can also trade False Positives for False negatives using a bias, B 
 
 if    

! 

(
! 

W T
! 
X + B) > 0  then   ω̂1 else  ω̂2 



Linear Classifiers and Boosted Learning Lesson 20 

 17-6 

A Committee of Boosted Classifiers 
 
One of the more original ideas in machine learning the last decade is the discovery of 
a method by to learn a committee of classifiers by boosting.  A boosted committee of 
classifiers can be made arbitrarily good: Adding a new classifier always improves 
performance.  
 
A committee of classifiers decides by voting.  
 

  
 
A feature vector is determined to be in the target class if the majority of classifiers 
vote > 0.  
 

 if  
  

! 

(
! 

W i
T ! X m )

i=1

I

" + b > 0  then   ω̂1 else  ω̂2 

  
To learn a boosted committee we iteratively add new classifiers to the committee.  
In each cycle we change the data set and learn a new classifier, Wi  
 
The data set will be changed by giving additional weight to improperly classified 
samples. We learn the next class by multiplying the Y labels a weight vector, Ai.  
 
   

! 

! 
W i = (XTX)"1XT (

! 
A i #
! 
Y )  

 



Linear Classifiers and Boosted Learning Lesson 20 

 17-7 

Learning a Committee of Classifiers with Boosting 
 
We can iteratively apply the above procedure to learn a committee of classifiers using 
boosting.  For this we will create a vector of "weights" am for each training sample.   
Initially, all the weights are 1.  
 
After each new classifier is added, we recalculate the weights to give more weight to 
improperly classified training samples.  
 
As we add classifiers, whenever a sample is misclassified by the committee we will 
increase its weight so that it carries more weight in the next classifier added.  
 

Recall the committee vote is  
  

! 

(
! 

W i
T ! X m )

i=1

I

"  > 0 for class 1 (positive detection).  

 

For m = 1 to M:  if  ( ym ·
  

! 

(
! 

W i
T ! X m )

i=1

I

" ) < 0  then   am= am+1 

 
The result is the (i+1)th weight vector Ai+1 

 

We then learn the i+1th classifier from the re-weighted set by   
 
   

! 

! 
W i+1 = (XTX)"1XT (

! 
A i+1 #

! 
Y )  

 
  



Linear Classifiers and Boosted Learning Lesson 20 

 17-8 

ROC Curve 
 
As we saw in lesson 19,  The ROC describes the True Positives (TP) and False Positives 
(FP) for a classifier as a function of the global bias B.   
 
 For m = 1 to M:  

 if    
  

! 

(
! 

W i
T ! X m )

i=1

I

"  +B > 0 and  ym > 0 then  TP=TP+1 

 if    
  

! 

(
! 

W i
T ! X m )

i=1

I

"  +B > 0 and  ym < 0 then  FP=FP+1  

  
The Boosting theorem states that adding a new boosted classifier to a committee 
always improves the committee's ROC curve.  We can continue adding classifiers 
until we obtain a desired rate of false positives and false negatives.  

  
 
However, in general, the improvement provided for each new classifier becomes 
progressively smaller. We can end with a very very large number of classifiers.  
 



Linear Classifiers and Boosted Learning Lesson 20 

 17-9 

Learning a Multi-Stage Cascade of Classifiers 
 
We can optimize the computation time by using a multi-stage cascade.  
With a multi-stage classifiers, only events labeled as positive are passed to the next 
stage.  
 

 
 
Each stage is applied with a bias, so as to minimize False negatives.  
 
Stages are organized so that each committee is successively more costly and more 
discriminant.  
 
Assume a set of M training samples {Xm} with labels {ym} . 
Set a desired error rate for each stage j : (FPj, FNj).  
 
For each stage, j, train the j+1 stage with all positive samples from the previous stage.  
 
Each stage acts as a filter, rejecting a grand number of easy cases, and passing the 
hard cases to the next stage.  The stages become progressively more expensive, but 
are used progressively less often. Globally the computation cost decreases 
dramatically.  
  
 
  



Linear Classifiers and Boosted Learning Lesson 20 

 17-10 

Perceptrons 
 
A perceptron is an incremental learning method for linear classifiers invented by 
Frank Rosenblatt in 1956.  The perceptron is an on line learning method in which a 
linear classifier is improved by its own errors.   
 
A perceptron learns a set of hyper-planes to separate training samples.  When the 
training data are perfectly separated the data is said to be "separable".  Otherwise, the 
data is said to be non-separable.  
 
The "margin", γ,  is the smallest separation between the two classes.  
   
When are the training samples are separable, the algorithm uses the errors to update a 
plane until there are no more errors.  When the training data is non-separable, the 
method may not converge, and must be arbitrarily stopped after a certain number of 
iterations.  
     
Note that for all positive examples. 
 
  ym(W 

→Τ X 
→

m  + B) > 0 if the classification is correct.  
 
The algorithm will apply a learning gain,   η,  to accelerate learning.  
  
Algorithm:  
 W 

→

o ← 0; bo ← 0; i = 0;  
 R ← max { || X 

→

m || } 
  REPEAT 
  FOR m = 1 TO  M DO  
   IF  ym(W 

→

i
Τ X 

→

m  + bi) ≤ 0 THEN  
    W 

→

i+1 ←W 
→

i  + η ym X 
→

m; 
    bi+1 ← bi + η ym R2; 
    i ← i + 1;  
   END IF 
  END FOR 
 UNTIL no mistakes in FOR loop.  
 
After each stage the margin for each sample, m, is  
 



Linear Classifiers and Boosted Learning Lesson 20 

 17-11 

 γm  = ym(W 
→

i
Τ X 

→

m  + bi)  
 
The coefficients must be normalised to compute the margin.  
 
 

! 

" W i =
Wi

||Wi ||
  

! 

" b i =
bi

||Wi ||
 

 
The decision rule is as before :  
 
   if    

! 

(
! 

W T
! 
X + B)) > 0  then   ω̂1 else  ω̂2 

 
The quality of the perceptron is give by the histogram of the margins.  
  
 
 



Linear Classifiers and Boosted Learning Lesson 20 

 17-12 

Kernel Methods 
 
Linear methods are very well suited for use with very high dimensional feature space. 
We can map a quadratic decision space into a linear space by addiing additional 
dimensions.  
  
 

 
 
A  quadratic suface in a D dimensional space can be transformed into a linear surface 
in a D(D+1)/2 space by  from the D dimensional space to a space P > D. using a 
kernel function, K().  
   
For example a D=2 quadratic space is linear in 5 dimensions:  
 

 X 
→

  = (x1, x2, ..., xD) can be projected into a  P  = 
D(D+1)

2      dimension defined by 
K(X) = W = (x1, x2, x1

2, x1x2, x2
2) 

  
W 
→

  = (x1, x2, ..., xD, x12, x1x2, x1x3, ....  xD-1xD, xD2) 
 
Ainsi, une fonction quadratique en D =  2 dimensions est linéaire en P = 5 dimensions  
 
 X 

→
  = (x1, x2)  K(X 

→
) = W 

→
   = (x1, x2, x12, x1x2, x22) 

 g(K(X 
→

 )) = g(W 
→

 )= aw1 + b w2 + c w3 + d w4 + e w5 
    = ax1 + b x2 + c x12 + d x1x2 + e x22  
 
The Normal is often used as a Kernel: 
  
K(X 

→
)  = N(X 

→
; µ 

→
, σ2)  


