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Notation 
x   a variable 
X   a  random variable (unpredictable value)   
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

E   An observation. An event.  
Tk   The class (tribe) k 
k   Class index 
K   Total number of classes 
ωk   The statement (assertion) that E  ∈ Tk 
p(ωk) =p(E ∈Tk) Probability that the observation E is a member of the class k. 
   Note that p(ωk) is lower case.  
Mk   Number of examples for the class k. (think M = Mass) 
M   Total number of examples.  

   

! 

M = Mk
k=1

K

"  

{

! 

Xm
k }  A set of Mk examples for the class k.  

   
  

! 

{Xm} = !
k=1,K

{Xm
k } 

P(X)   Probability density function for X 
P(  

! 

! 
X )   Probability density function for    

! 

! 
X 

 
 

P(  

! 

! 
X 

 
| ωk)    Probability density for   

! 

! 
X 

  
the class k. ωk  = E  ∈ Tk.  

 
N   The number components in a Gaussian Mixture model 
 
Gaussian Mixture model:  
 

 
    

! 

P(
! 
X ) = "n

n=1

M

# N (
! 
X ; ! µ n,Cn ) 
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Maximum Likelihood Estimation.   
 
Our goal is to represent a density function as a weighted sum of normal densities.   
 

 
    

! 

P(
! 
X ) = "n

n=1

M

# N (
! 
X ; ! µ n,Cn ) 

 
For this, the problem is to represent the vector of parameters:  
 
   

! 

! v = (! v 1,
! v 2,...,

! v n ) 
 
Where  
 
   

! 

! v n = ("n ,
! 
µ n,Cn )  

 
For N components, a feature vector of D dimensions,   

! 

! v n  has  
 
  N·P  = N·(1 + D + D(D+1)/2)  coefficients.  
 
Our approach will be to estimate the coefficient vector with the highest probability.  
For this we need to calculate a Maximum Likelihood Estimate (MLE)  
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Likelihood 
 
The Likelihood of a parameter vector,   

! 

! v , given a training set, {Xm} is defined as 
 

 
  

! 

L( ! " | {Xm}) = P({Xm} |
! 
" ) = P(Xm |

! 
" )

m=1

M

#  

 
For normal density functions, 

    

! 

P(
! 
X ) = N (

! 
X ; ! µ ,C) =

1

(2")
D
2 det(C)

1
2

e– 1
2
(
! 
X – ! µ )T C –1 (

! 
X – ! µ )  

 
it is more convenient to work with the Log-Likelihood 
 

 
  

! 

L(v) = Log{L( ˆ " | {Xm}) = Log{P({Xm} | ˆ " )} = Log{P(Xm | ˆ " )}
m=1

M

#  
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MLE for a Univariate Gaussian Density functions  
 
For D=1, N(X; µ,σ)  the paremeter vector is   

! 

! v  =  (µ, σ)  
 
To estimate µ,σ  using MLE, define the log likelihood.   
 

 
    

! 

L(! v ) = Log{P(Xm |
! v )} = – 1

2
Log{2"# 2} – 1

2# 2 (Xm $µ)2  

 
The maximum Log Likelihood occurs when the derivative is zero.  
 

 

! 

"l(v)
"µ

=
1
# 2 (Xm – µ) = 0

m=1

M

$  

 
 

  

! 

"l(! v )
"# 2 = – 1

2# 2 +
(Xm $µ)2

2# 4 = 0  

 
We formulate this as the gradient 
 

 

    

! 

"µ ,# L(! v ) =

$l(v)
$µ
$l(! v )
$# 2

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 

=

1
# 2 (Xm – µ)

m=1

M

+

– 1
2# 2 +

(Xm ,µ)2

2# 4

% 

& 

' 
' 
' 
' 

( 

) 

* 
* 
* 
* 

= 0  

 ∇µ,σ L(  

! 

! 
" )   = 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞1

σ2 (Xm – µ)

 – 
1

2σ2 + 
(Xm – µ)2

2σ4  
      = 0 

 
 
with a little algebra:  
 

 

! 

ˆ µ =
1
M

Xm
m=1

M

"  

 

  

! 

" 2 =
1
M

(Xm #µ)2
m=1

M

$  

 
See lecture 17 for the derivation.  
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Maximum Likelihood for a Multivariate Density Function 
 
The principle is the same for D >1, however the equations are more complicated.  
 
   

! 

! v = (! v 1,
! v 2,...,

! v n )  with each   

! 

! v n = ("n ,
! 
µ n,Cn )  

 

 
    

! 

L( ˆ v ) = Log{P(
! 
X m | " v )} = – 1

2
Log{(2")D det(C)}# 1

2
(
" 
X m #µ)T C#1(

" 
X m #µ)  

   

 
  

! 

ˆ v = max
v

{ P(
! 
X m |

m=1

M

" ! v )} = max
v

{ Log(P(
! 
X m | ! v ))

m=1

M

# }  

 
The most likely 

! 

ˆ v  may be found when the gradient of 

! 

ˆ v  is null.  
  

 ∇ν L(  

! 

! v )  = ∇ν 
  

! 

Log(P(
! 
X m |
! v ))

m=1

M

"  = 0 

 ∇ν  is the gradient operator: 

! 

"v =

#
#v1
#
#v2
...
#

#vNP

$ 

% 

& 
& 
& 
& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
) 
) 
) 

 

 

 

    

! 

"vL(! v ) =

#
#v1
#
#v2
...
#

#vNP

$ 

% 

& 
& 
& 
& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
) 
) 
) 

L(! v ) =

#L(! v )
#v1
#L(! v )
#v2
...

#L(! v )
#vNP

$ 

% 

& 
& 
& 
& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
) 
) 
) 

 

 
   
Setting   

! 

"vl(
! v )=0 gives the classic formulae :  

 

 
  

! 

ˆ µ =
1
M

! 
X m

m=1

M

"  
  

! 

! 
C = 1

M
(
! 
X m – ˆ µ )

m=1

M

" (
! 
X m – ˆ µ )T  
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The EM algorithm  
 
EM iteratively estimates a model for the density function as a composition of N 
unknown sources. Each source is assumed to have a different Normal density.  
 
 EM requires an unlabeled training set of of M observations   

! 

{
! 
X m} .  

 
The EM algorithmwill iterates between estimating the probability that each 
observation belongs to each of N sources, and estimate the mean and covariance for 
each source. This has many uses, including estimating the density functions for a 
Hiddent Markov Model (HMM) as well as for estimating the parameters for a  
Gaussian Mixture model.  
 
Each source can be interpreted as a separate class.  
Because EM operates on an unlabeled training set it can be used to discover classes 
by Unsupervised Learning.   
 
We suppose that each observation, m,  is from one of N sources:  hm=n 
The sources are unknown (hidden).    
 
  hm = n  is equivalent to writing then  hm(n)=1 else   hn(m)=0.  
 
However, we will not estimate Boolean values, but probabilities.  
 
 hm(n) = h(m,n) = Prob{ Observation m is from Source n} 
 
Expectation step (E):  
Calculate the table  h (m,n)(i) using the training data.  
 
 h(m, n)(i)=  p( hm=n | X1, X2, ..., XM,  ν(i))   
 

 h(m, n)(i) = 
 αn(i)N(Xm; µn(i),σn(i)) 

 ∑
j=1

N
  αj(i)N(Xm; µj(i),σj(i))

   

 
Maximization Step: (M) 
Calculate ν  (i+1)  using  p(hm | X1, X2, ..., XM,  ν

 (i))  
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How can we know when to stop?   
We need to have an estimate of the "goodness" of each estimate. This is precisely the 
likelihood of   

! 

! v n  
 

 
  

! 

Q(i) = E{L( ˆ " (i) ) | {Xm}} = E{Log{L( ˆ " (i) | {Xm})} = Log{P(Xm | ˆ " (i) )}
m=1

M

#  

 
 ∆Q(i) = Q(i)

 – Q(i–1) 
 
It can be shown that ∆Q(i)  only decreases    :       ∆Q(i) ≤ ∆Q(i-1) 
 
Thus the estimation is stopped when   ∆Q(i) ≤ threshold.  
 
  h(m, n)(i) = P(hm=n | {Xm}, ν 

→(i))  
 
E (Expectation):   
 

 h(m, n)(i) : =  
 αn(i)N(Xm; µn(i),σn(i)) 

 ∑
j=1

N
  αj(i)N(Xm; µj(i),σj(i))

   

 
M: (Maximisation)  
 

 Sn(i+1) :=  ∑
m=1

M
   h(m, n)(i)  

 

 αn(i+1) :=  
1
M  Sn(i+1)   

 

 µn(i+1) :=  
1

Sn(i+1) ∑
m=1

M
   h(m, n)(i) Xm  

 

 σ2n(i+1) : = 1
Sn(i+1) ∑

m=1

M
   h(m,n)(i) (Xm – µn(i+1))2 
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For D> 1 the covariance C is composed of a matrix of coefficients  σjk2:  
 

 σ2jkn(i+1) : = 1
Sn(i+1) ∑

m=1

M
   h(m,n)(i) (Xjm – µjn(i+1))(Xkm – µkn(i+1)) 

 
 
 
 


