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Notation 
x   a variable 
X   a  random variable (unpredictable value)   
N   The number of possible values for x (Can be infinite).   
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

E   An observation. An event.  
A,B   Classes of events.  
Tk   The class (tribe) k 
k   Class index 
K   Total number of classes 
ωk   The statement (assertion) that E  ∈ Tk 
p(ωk) =p(E ∈Tk) Probability that the observation E is a member of the class k. 
   Note that p(ωk) is lower case.  
 
Mk   Number of examples for the class k. (think M = Mass) 
M   Total number of examples.  

   

! 

M = Mk
k=1

K

"  

{

! 

Xm
k }  A set of Mk examples for the class k.  

   
  

! 

{Xm} = !
k=1,K

{Xm
k } 

P(X)   Probability density function for X 
P(  

! 

! 
X )   Probability density function for    

! 

! 
X 

 
 

P(  

! 

! 
X 

 
| ωk)    Probability density for   

! 

! 
X 

  
given ωk where ωk  = E  ∈ Tk.  

 
h(x)   A Histogram of values for x.   
hk(  

! 

! 
X )  A histogram of values for x for the class k.  

   

! 

h(x) = hk
k=1

K

" (x)  

Q   Number of cells in  h(  

! 

! 
X ).  Q = ND 
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Probability 
 
A probability is a form of truth function.  
A probability maps a proposition into a numerical truth value between 0 and 1.  
 
Formally, the proposition should be a predicate, such as  
Member(E, Class-K) or Equals(X=y).  
 
For notational reasons, this is often simplified.  
For example, for class membership, we will use the greek variable ωk  
for Member(E, Class-K).  
 
 Thus p(ωk) =p(E ∈Tk) = p(Member(E, Class-K)) 
 
Probability will be represented by a lower case function p().  
 
There are two ways to define the meaning of "probability":  
 
1) Statistics : Frequency of Occurrence: The fraction of times that something is true, 
or  
2) Probability axioms: Using a systems of axioms. 
 
A statistical, or Frequency-based, approach is more intuitive, but not always possible 
to apply.  In some cases, the axioms of probability theory can provide a solution that 
is not possible from frequency of occurrence.   
 
In either case, probability is a function that returns a number between 0 and 1.  
 Pr() ∈  [0, 1].  
 
 
Probability as Frequency of Occurence.  
 
A frequency based definition of probability is sufficient for many practical problems.   
 
Suppose we have M observations of random events, {Em}, for which Mk of these 
events belong to the class k.  The probability that one of these observed events 
belongs to the class k is: 
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 Pr(E∈Tk ) = 
Mk
M     

 
If we make new observations under the same observations conditions (ergodicity), 
then it is reasonable to expect the fraction to be the same. However, because the 
observations are random, there may be differences.  These differences will grow 
smaller as M grows larger.   
 
The average (root-mean-square) error for  

 Pr(E∈Tk ) = 
Mk
M     

will be proportional to k and inversely proportional to M.  
 
Axiomatic Definition of probability 
 
Probability theory provides a more abstract definition for probability using 3 axioms.  
 
An axiomatic definition makes it possible to apply analytical techniques to the design 
of classification systems.  Only three postulates (or axioms) are necessary:   
In the following, let E be an event, let S be the set of all events, and let Tk be set of 
events that belong to class k with K total classes.   

  

! 

S = Tk
k=1,K
!   

 
Postulate 1 :  ∀ Tk ∈ S  :  p(E∈Tk ) ≥ 0 
Postulate 2 :  p(E∈S) = 1 
Postulate 3 :  
∀ Ti, Tj ∈ S  such that   Ti ∩ Tj = ∅ :  p( E∈ Ti ∪ Tj) = p(E∈Ti) + p(E∈Tj)  
 
A probability function is any function that respect these three axioms.  
A probability is the truth value produced by a probability function.  
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The probability of the value for a random variable.  
 
Probability Density Function (pdf) 
 
A probability density function (pdf) is a function of a continuous variable or vector, 
  

! 

! 
X ,  of variables such that :   
 
1)    

! 

! 
X " RD:    

! 

! 
X  is a vector of D real valued variables with values between  [–∞, ∞] 

2)  
  

! 

P(
! 
X )

"#

#

$ =1 

 
We will always note a pdf as a Capital P().  
 
The simplest example is the uniform density function.  
 
rect :   P(X) = rect (X).  
  
 
An important pdf is the Normal or Gaussian density function: 
     

P(X) =  N(x; µ, σ) = 
1

2πσ     e 
–

(x–µ)2
2σ2        

 µ µ+!µ"!
x

N(x; µ, !)

 
 
In a few weeks we will also use a Sum or Mixture of Normal density functions.  
 

 P(X)  =   ∑
n=1

N
    αnN(x; µn, σn) 

 
Note that the ratio of two pdfs can be a probability:  
 
 p(E) = 

! 

p(E) =
P1(X)
P2(X)

 

 
We will use pdf's to derive recognition systems.  However, as an introduction, much 
of the intuition for pdf's can be gained from a simplification:  histograms.  
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Histogram Representation of Probability of a variable 
 
For integer x, such that x has a finite number of values x ∈ [xmin, xmax], we can 
consider each value of x as a class.  
 
We can then estimate the probability for each class using M observations {Xm}.  
 
To estimate the probability of a value, we count the number of times it occurs.  
For this we use a table of "frequency of occurrence", also known as a "histogram", 
h(x).   
 
The existence of computers with gigabytes of memory has made the computation of 
such tables practical.  
  
We use the table to count  the number of times each value occurs:  
 
 ∀m=1, M  :  h(Xm) := h(Xm) + 1;  M := M+1;  
 
Thus, the probability of a value,  X ∈ [Xmin, Xmax]  is the frequency of occurrence 
of the value.   
 
The probability that a random value X takes a given value x is  
 

  p(X=x) =  
1
M   h(x)   

 
Problem: How many observations, M, do we need?  
 
Answer:   
 
 Given N possible values of x, and M observations, in the worst case:  
 
 "average error" is proportional to  O(N/M).  
 
Rule of thumb.  For most applications, we need    M = 10N  (10 samples per "cell").  
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The Classic Formulation for Bayes Rule 
 
Let E represent a random event from an event "generator" (for example a sensor).  
 
Consider 2 independent classes of events A and B such that  
 
 E may be A ∩ B or  ¬A ∩ B or  A ∩ ¬B or  ¬A ∩ ¬B 
 
For these two classes we can form 2 propositions, q and r.  
 
 q  ≡ E ∈ A   and    r ≡ E ∈ B 
 
thus the probability of each proposition is  
 
  p(q) ≡ Pr{E ∈ A} and  
  p(r) ≡ Pr{E ∈ B}.  
 
From the axioms of probability:  
 
 p(q) + p(¬q) = 1.  
 
 p(q ∧ r) is the joint probability of  q and r, that E ∈ A and E ∈ B 
 
If A and B are independent then q and r are independent :  
 
 p(q ∧ r) =p(q) · p(r),  
 p(q ∨ r) = p(q) +  p(r).  
 
Graphically this is drawn:  
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  p(q ∧ r)  + p(q ∧ ¬r)  + p(¬q ∧ r)   + p(¬q ∧ ¬r)  = 1 
 
The marginal probabilities are:  
 
  p(q) =    p(q ∧ r)  +  p(q ∧ ¬r)  
  p(r) =    p(q ∧ r)  +  p(¬q ∧ r)  
 
The "conditional" probabilities are defined as :  
  

   p(r | q)  = 

! 

p(q" r)
p(q)

=  

! 

p(q" r)
p(q" r)+ p(q"¬r)

 

 
and 
 

    p(q | r)  = 

! 

p(q" r)
p(r)

=   

! 

p(q" r)
p(q" r)+ p(¬q" r)

 

 
that is, the probability that q is true, given that r is true is p(q | r).  
 
By algebra :   
 
  p(r | q) p(q)  = p(q ∧ r)  =   p(q | r)  p(r) 
 
thus 
 
 p(r | q) p(q)  =   p(q | r)  p(r) 
 
This is Bayes Rule.  This can also be written:  
 
 

  

! 

p(r | q) =
p(q | r)p(r)

p(q)
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Bayes Rule as a Ratio of Histograms 
 
Histograms provide an alternate view of Bayes Rule.  
This view illustrates how Bayes rule can be used with pdfs 
 
Histograms 
 
As we saw, for integer x from a bounded set of values, such that  x ∈ [xmin, xmax], 
 
the probability that a random observation X takes on x is 
 

  P(X=x)  = 
1
M  h(x) 

 
The validity of this depends on the ratio of the number of sample observations M and 
the number of cells in the histogram Q=N  

 
This is true for vectors as well as values.  
 
For a vector of D values    

! 

! x  the table has D dimensions.  h(x1, x2, …, xD) = h(  

! 

! x ) 
 

The average error depends on the ration  Q=ND 
 and M. :   Ems ~  O( 

Q
M ) 

 
We need to assure that   M >> Q = Nd 
  
As a general rule : M = 10Nd 
  
 
Example:  
 
Suppose that we have a bounded random variable X such that  
 
 0 ≤ X < xmax 

 
We can map X to an integer n with N values between 0 and  N–1 using trunc() 
 
 

! 

n = trunc(N X
xmax

) 
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Suppors that we have 2 classes, k=1 and k=2, and that we observe  
M1 events from class k=1:  

! 

{Xm
1 }  and M2  events from class k=2 

! 

{Xm
2 }  

 
We maps these to integers : 

! 

{nm
1 } and 

! 

{nm
2 } 

 
We build the histograms h1(n) and h2(n):  
 
for m=1 to M1 : 

! 

h1(nm
1 ) := h1(nm

1 )+1 
for m=1 to M2 : 

! 

h2 (nm
2 ) := h2 (nm

2 )+1 
 
We also define  

! 

h(n) = h1(n)+ h2 (n) and M = M1+ M2  
 

 Note that the 

! 

p(E " T1 ) = p(#1 ) =
M1

M
 

 

Thus, for a new observation X,  

! 

n = trunc(N X
xmax

) then 

 

 

! 

p(n) =
1
M
h(n)  

 

! 

p(n |"1 ) =
1
M1

h1(n)   

 
Thus the  

 

! 

p("1 | n) =
p(n |"1 )p("1 )

p(n)
=

1
M1

h1(n)
M1

M
1
M
h(n)

=
h1(n)
h(n)

 

  

  
For example, p(ω1| n=2 ) = 1/4 
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Multi-dimensional histograms  
 
This method can be generalized to vectors with any number of dimensions.  
 
ATTENTION!  The number of cells will grow exponentially with D.  
 
The histogram must have sufficient samples M.  
 
 M ≥ 10   Q ≥ 10 ND.  

  
Here is a table of numbers of cells, Q, in a histogram of D dimensions of N values.  
  N  \    d 1 2 3 4 5 6 

2  21 22 23 24 25 26 

4  22 24 26 28 210 =1 Kilo 212 =2 Kilo 

8  23 26 29 212 215 218 

16  24 28 212 216 220 = 1 Meg 224 = 4 Meg 

32 25 210 =1 Kilo 215 220 = 1 Meg 225 230 = 1 Gig 

64 26 212 218 224 230 = 1 Gig 236  

128 27 214 221 = 2 Meg 228  235  242 =2 Tera 

256 28 216 224 232 = 2 Gig 240 = 1 Tera 248  
 
 
 


